Power MOSFET

24 V, 110 A, N-Channel DPAK

Features

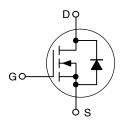
- Planar HD3e Process for Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Loss
- Low C_{iss} to Minimize Driver Loss
- Low Gate Charge
- Optimized for High Side Switching Requirements in High-Efficiency DC-DC Converters
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	24	V
Gate-to-Source Voltage - Continuous	V_{GS}	±20	V
Thermal Resistance – Junction–to–Case Total Power Dissipation @ T _C = 25°C Drain Current	R _{θJC} P _D	1.35 110	°C/W W
 Continuous @ T_C = 25°C, Chip Continuous @ T_C = 25°C 	I _D	110 110	A A
Limited by Package - Continuous @ T _A = 25°C Limited by Wires	I _D	32	Α
– Single Pulse (t _p = 10 μs)	I _D	110	Α
Thermal Resistance - Junction-to-Ambient (Note 1) - Total Power Dissipation @ T _A = 25°C - Drain Current - Continuous @ T _A = 25°C	R _{θJA} P _D I _D	52 2.88 17.5	°C/W W A
Thermal Resistance - Junction-to-Ambient (Note 2) - Total Power Dissipation @ T _A = 25°C - Drain Current - Continuous @ T _A = 25°C	R _{θJA} P _D I _D	100 1.5 12.5	°C/W W A
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 175	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = 50 Vdc, V_{GS} = 10 Vdc, I_L = 15.5 Apk, L = 1.0 mH, R_G = 25 Ω)	E _{AS}	120	mJ
Maximum Lead Temperature for Soldering Purposes, (1/8" from case for 10 s)	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. When surface mounted to an FR4 board using 0.5 sg in drain pad size.
- When surface mounted to an FR4 board using the minimum recommended pad size.

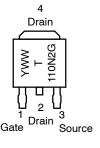


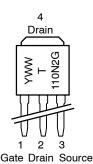
ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
24 V	4.1 mΩ @ 10 V	110 A

N-Channel




CASE 369AA DPAK (Surface Mount) STYLE 2

CASE 369D DPAK (Straight Lead) STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENTS

Y = Year

WW = Work Week

T110N2 = Device Code

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

1

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

Page	(Symbol	Min	Тур	Max	Unit	
(V _{GS} = 0 V, I _D = 250 µA) 24 28 15 mV/mode Positive Temperature Coefficient Ibss 15 mV/mode µA 15 mV/mode µA	OFF CHARACTERISTICS						
(V _{DS} = 20 V, V _{QS} = 0 V), V _{QS} = 0 V, T _J = 125°C) 1.5 10 1.5 10 Gate-Body Leakage Current (V _{QS} = ±20 V, V _{DS} = 0 V) I _{QSS} 1.0 ±100 nA ON CHARACTERISTICS (Note 3) V _{QS} (th) 1.0 1.5 5.0 ±0.0 V	$(V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A})$	V _{(BR)DSS}	24			V mV/°C	
On CHARACTERISTICS (Note 3) Class Class	$(V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V})$		IDSS				μΑ
Case Threshold Voltage (Note 3)	Gate-Body Leakage Current (Vo	$_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V})$	I _{GSS}			±100	nA
Vogs = Vogs, I _D = 250 µA⟩ Negative Threshold Temperature Coefficient 1.0 1.5 5.0 mV/°	ON CHARACTERISTICS (Note 3	3)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(V_{DS} = V_{GS}, I_D = 250 \mu A)$		V _{GS(th)}	1.0		2.0	V mV/°C
DYNAMIC CHARACTERISTICS Input Capacitance (VDS = 20 V, VGS = 0 V, f = 1.0 MHz) Coss 1105 1670 False Coss 1105 False Time Coss Coss 1105 False Time Coss Coss Time T	$(V_{GS} = 10 \text{ V}, I_D = 110 \text{ A})$ $(V_{GS} = 4.5 \text{ V}, I_D = 55 \text{ A})$ $(V_{GS} = 10 \text{ V}, I_D = 20 \text{ A})$	R _{DS(on)}		5.5 3.9		mΩ	
$ \begin{array}{ c c c c c } \hline \text{Input Capacitance} & C_{iss} & 2710 & 3440 \\ \hline \text{Output Capacitance} & (V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}) & C_{oss} & 1105 & 1670 \\ \hline \text{Transfer Capacitance} & & 450 & 640 \\ \hline \hline \text{SWITCHING CHARACTERISTICS} & (Note 4) \\ \hline \hline \text{Turn-On Delay Time} & & & & & & & & & & & & & & & & & & &$	Forward Transconductance (V _{DS}	s = 10 V, I _D = 15 A) (Note 3)	9FS		44		Mhos
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DYNAMIC CHARACTERISTICS						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance		C _{iss}		2710	3440	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	$(V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz})$	C _{oss}		1105	1670	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transfer Capacitance		C _{rss}		450	640	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTIC	CS (Note 4)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time		t _{d(on)}		11	22	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	(V _{GS} = 10 V, V _{DD} = 10 V,	t _r		39	80	
	Turn-Off Delay Time	$I_D = 40 \text{ A}, R_G = 3.0 \Omega$	t _{d(off)}		27	40	
	Fall Time		t _f		21	40	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Charge				23.6	28	nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Q _{GS}		5.1		
			Q_{GD}		11		
	SOURCE-DRAIN DIODE CHAR	ACTERISTICS					
$(I_{S} = 30 \text{ A, } V_{GS} = 0 \text{ V,}$ $dI_{S}/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 3)}$ t_{b} 30 t_{b}	Forward On-Voltage	$(I_S = 55 \text{ A}, V_{GS} = 0 \text{ V})$	V _{SD}		0.99	1.2	V
$dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 3)}$ t_b 25	Reverse Recovery Time		t _{rr}		36.5		ns
t _b 25		$(I_S = 30 \text{ A}, V_{GS} = 0 \text{ V}, \\ dI_S/dt = 100 \text{ A}/\mu\text{s}) \text{ (Note 3)}$	ta		30		
Reverse Recovery Stored Charge Q_{rr} 0.048 μ C			t _b		25		
	Reverse Recovery Stored Charg	je	Q _{rr}		0.048		μC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

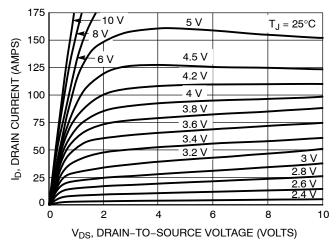
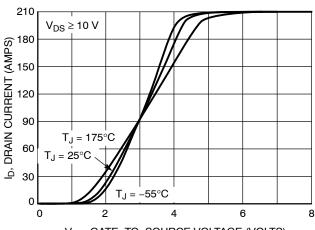



Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS) Figure 2. Transfer Characteristics

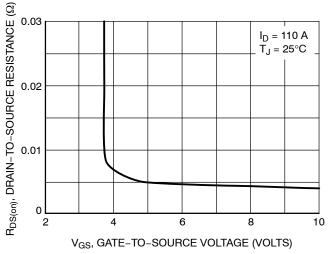


Figure 3. On–Resistance versus Gate–to–Source Voltage

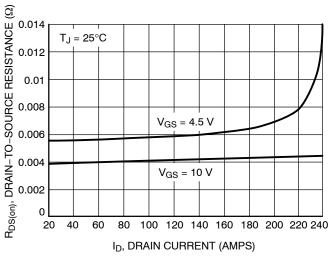


Figure 4. On-Resistance versus Drain Current and Gate Voltage

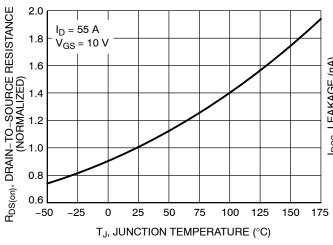


Figure 5. On–Resistance Variation with Temperature

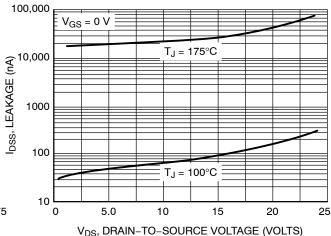
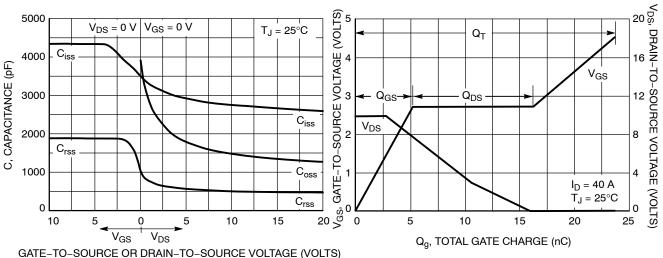



Figure 6. Drain-to-Source Leakage Current versus Voltage

-10-300NGE ON DHAIN-10-300NGE VOLIAGE (VOLIS

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

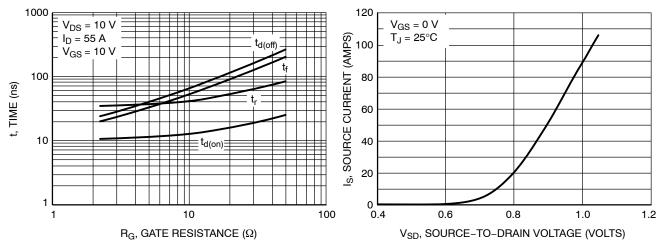


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

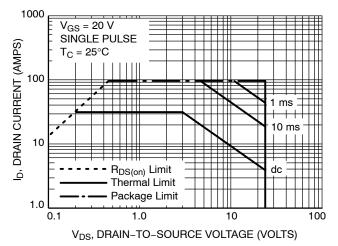


Figure 11. Maximum Rated Forward Biased Safe Operating Area

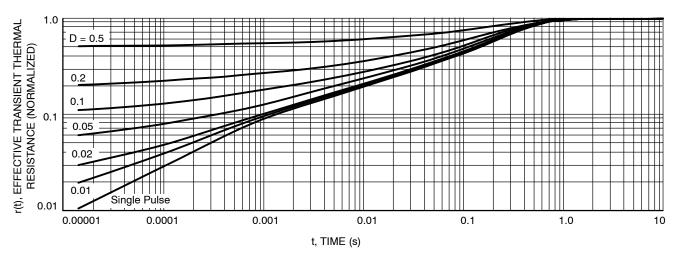
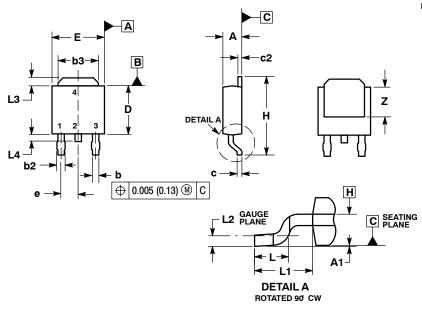


Figure 12. Thermal Response

ORDERING INFORMATION


Device	Package	Shipping [†]
NTD110N02RG	DPAK (Pb-Free)	75 Unito/Doil
NTD110N02R-001G	DPAK (Straight Lead) (Pb-Free)	- 75 Units/Rail
NTD110N02RT4G	DPAK (Pb-Free)	2500/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

CASE 369AA-01 **ISSUE B**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

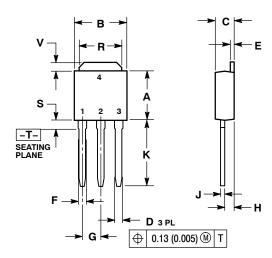
 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

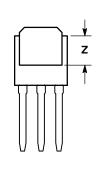
STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090 BSC		2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108	8 REF 2.		REF	
L2	0.020 BSC		0.51	1 BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
7	0 155		3 93		

SOLDERING FOOTPRINT*

6.20 3.0 0.244 0.118 2.58 0.101 5.80 6.172 1.6 0.228 0.063 0.243


 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 3:1


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK-3 (SINGLE GAUGE)

CASE 369D-01 **ISSUE B**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETER	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
Κ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2:

- PIN 1. GATE
 - 2. DRAIN
 - SOURCE
 - DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered radiations of semiconduction Components industries, Ite (SCILLO). Solitude services are injust of make drainges without further induce to any products herein. SCILLO makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative