

100-Tap Digitally Programmable Potentiometer (DPP™) with Buffered Wiper

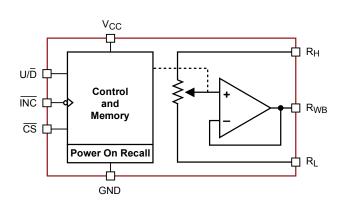
FEATURES

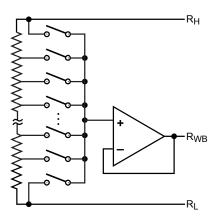
- 100-position linear taper potentiometer
- Non-volatile EEPROM wiper storage; buffered wiper
- Low power CMOS technology
- Single supply operation: 2.5V 6.0V
- Increment up/down serial interface
- Resistance values: $10k\Omega$, $50k\Omega$ and $100k\Omega$
- Available in PDIP, SOIC, TSSOP and MSOP packages

APPLICATIONS

- Automated product calibration
- Remote control adjustments
- Offset, gain and zero control
- **Tamper-proof calibrations**
- Contrast, brightness and volume controls
- Motor controls and feedback systems
- **Programmable analog functions**

For Ordering Information details, see page 12.


DESCRIPTION

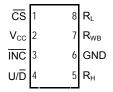

The CAT5111 is a single digitally programmable potentiometer (DPP™) designed as a electronic replacement for mechanical potentiometers. Ideal for automated adjustments on high volume production lines, they are also well suited for applications where equipment requiring periodic adjustment is either difficult to access or located in a hazardous or remote environment.

The CAT5111 contains a 100-tap series resistor array connected between two terminals R_H and R_L. An up/down counter and decoder that are controlled by three input pins, determines which tap is connected to the wiper, R_{WB}. The CAT5111 wiper is buffered by an op amp that operates rail to rail. The wiper setting, stored in non-volatile memory, is not lost when the device is powered down and is automatically recalled when power is returned. The wiper can be adjusted to test new system values without effecting the stored Wiper-control of the CAT5111 accomplished with three input control pins, \overline{CS} , U/ \overline{D} , and INC. The INC input increments the wiper in the direction which is determined by the logic state of the U/D input. The CS input is used to select the device and also store the wiper position prior to power down.

The digitally programmable potentiometer can be used as a buffered voltage divider. For applications where the potentiometer is used as a 2-terminal variable resistor, please refer to the CAT5113. The buffered wiper of the CAT5111 is not compatible with that application.

FUNCTIONAL DIAGRAM




Electronic Potentiometer Implementation

PIN CONFIGURATION

PDIP 8-Lead (L) SOIC 8 Lead (V) MSOP 8 Lead (Z)

TSSOP 8 Lead (Y)

PIN DESCRIPTION

INC: Increment Control Input

The $\overline{\text{INC}}$ input (on the falling edge) moves the wiper in the up or down direction determined by the condition of the U/ $\overline{\text{D}}$ input.

U/D: Up/Down Control Input

The U/ \overline{D} input controls the direction of the wiper movement. When in a high state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment toward the R_H terminal. When in a low state and \overline{CS} is low, any high-to-low transition on \overline{INC} will cause the wiper to move one increment towards the R_L terminal.

R_H: High End Potentiometer Terminal

 R_{H} is the high end terminal of the potentiometer. It is not required that this terminal be connected to a potential greater than the R_{L} terminal. Voltage applied to the R_{H} terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND.

R_{WB}: Wiper Potentiometer Terminal (Buffered)

 R_{WB} is the buffered wiper terminal of the potentiometer. Its position on the resistor array is controlled by the control inputs, \overline{INC} , U/\overline{D} and \overline{CS} .

RL: Low End Potentiometer Terminal

 R_{L} is the low end terminal of the potentiometer. It is not required that this terminal be connected to a potential less than the R_{H} terminal. Voltage applied to the R_{L} terminal cannot exceed the supply voltage, V_{CC} or go below ground, GND. R_{L} and R_{H} are electrically interchangeable.

CS: Chip Select

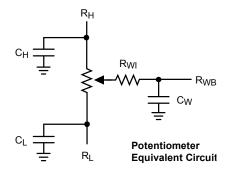
The chip select input is used to activate the control input of the CAT5111 and is active low. When in a

PIN DESCRIPTIONS

Name	Function
ĪNC	Increment Control
U/D	Up/Down Control
R _H	Potentiometer High Terminal
GND	Ground
R _{WB}	Buffered Wiper Terminal
R_L	Potentiometer Low Terminal
C S	Chip Select
V _{CC}	Supply Voltage

high state, activity on the \overline{INC} and U/\overline{D} inputs will not affect or change the position of the wiper.

DEVICE OPERATION


The CAT5111 operates like a digitally controlled potentiometer with $R_{\rm H}$ and $R_{\rm L}$ equivalent to the high and low terminals and $R_{\rm WB}$ equivalent to the mechanical potentiometer's wiper. There are 100 available tap positions including the resistor end points, $R_{\rm H}$ and $R_{\rm L}$. There are 99 resistor elements connected in series between the $R_{\rm H}$ and $R_{\rm L}$ terminals. The wiper terminal is connected to one of the 100 taps and controlled by three inputs, $\overline{\rm INC}$, U/D and $\overline{\rm CS}$. These inputs control a seven-bit up/down counter whose output is decoded to select the wiper position. The selected wiper position can be stored in nonvolatile memory using the INC and $\overline{\rm CS}$ inputs.

With $\overline{\text{CS}}$ set LOW the CAT5111 is selected and will respond to the U/D and $\overline{\text{INC}}$ inputs. HIGH to LOW transitions on $\overline{\text{INC}}$ will increment or decrement the wiper (depending on the state of the U/D input and seven-bit counter). The wiper, when at either fixed terminal, acts like its mechanical equivalent and does not move beyond the last position. The value of the counter is stored in nonvolatile memory whenever $\overline{\text{CS}}$ transitions HIGH while the $\overline{\text{INC}}$ input is also HIGH. When the CAT5111 is powered-down, the last stored wiper counter position is maintained in the nonvolatile memory. When power is restored, the contents of the memory are recalled and the counter is set to the value stored.

With INC set low, the CAT5111 may be de-selected and powered down without storing the current wiper position in nonvolatile memory. This allows the system to always power up to a preset value stored in nonvolatile memory.

OPERATION MODES

ĪNC	<u>cs</u>	U/D	Operation
High to Low	Low	High	Wiper toward R _H
High to Low	Low	Low	Wiper toward R _L
High	Low to High	Х	Store Wiper Position
Low	Low to High	Х	No Store, Return to Standby
Х	High	Х	Standby

ABSOLUTE MAXIMUM RATINGS(1)

Parameters	Ratings	Units
Supply Voltage		
V _{CC} to GND	-0.5 to +7V	V
Inputs		
CS to GND	-0.5 to V _{CC} +0.5	V
INC to GND	-0.5 to V _{CC} +0.5	٧
U/D to GND	-0.5 to V _{CC} +0.5	V
R _H to GND	-0.5 to V _{CC} +0.5	٧
R _L to GND	-0.5 to V _{CC} +0.5	V
R _{WB} to GND	-0.5 to V _{CC} +0.5	V

Parameters	Ratings	Units
Operating Ambient Temperature		
Commercial ('C' or Blank suffix)	0 to 70	°C
Industrial ('I' suffix)	-40 to +85	°C
Junction Temperature	+150	°C
Storage Temperature	-65 to 150	°C
Lead Soldering (10s max)	+300	°C

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Test Method	Min	Тур	Max	Units
$V_{ZAP}^{(2)}$	ESD Susceptibility	MIL-STD-883, Test Method 3015	2000			V
I _{LTH} ^{(2) (3)}	Latch-Up	JEDEC Standard 17	100			mA
T_DR	Data Retention	MIL-STD-883, Test Method 1008	100			Years
N _{END}	Endurance	MIL-STD-883, Test Method 1003	1,000,000			Stores

DC ELECTRICAL CHARACTERISTICS

 V_{CC} = +2.5V to +6V unless otherwise specified

Power Supply

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{CC}	Operating Voltage Range		2.5	_	6	V
	Supply Current (Ingrament)	$V_{CC} = 6V, f = 1MHz, I_W = 0$	_	_	200	μA
I _{CC1}	Supply Current (Increment)	$V_{CC} = 6V, f = 250kHz, I_W = 0$	_	_	100	μA
	Supply Current (Write)	Programming, V _{CC} = 6V	_	_	1000	μA
I _{CC2}		V _{CC} = 3V	_	_	500	μA
I _{SB1} ⁽³⁾	Supply Current (Standby)	$\overline{CS} = V_{CC} - 0.3V$ U/ \overline{D} , $\overline{INC} = V_{CC} - 0.3V$ or GND	_	75	150	μA

- (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside of those listed in the operational sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.
- (2) This parameter is tested initially and after a design or process change that affects the parameter.
- (3) Latch-up protection is provided for stresses up to 100mA on address and data pins from -1V to $V_{\rm CC}$ + 1V
- (4) $I_W =$ source or sink
- (5) These parameters are periodically sampled and are not 100% tested.

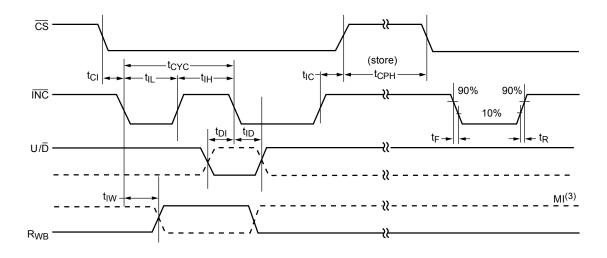
Logic Inputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{IH}	Input Leakage Current	$V_{IN} = V_{CC}$	_	_	10	μΑ
I _{IL}	Input Leakage Current	V _{IN} = 0V	_	_	-10	μΑ
V_{IH1}	TTL High Level Input Voltage	4.5V ≤ V _{CC} ≤ 5.5V	2	_	V_{CC}	V
V _{IL1}	TTL Low Level Input Voltage	$4.5V \leq V_{CC} \leq 5.5V$	0	_	0.8	V
V _{IH2}	CMOS High Level Input Voltage	2.5V ≤ V _{CC} ≤ 6V	V _{CC} x 0.7	_	V _{CC} + 0.3	V
V _{IL2}	CMOS Low Level Input Voltage	$2.5V \leq V_{CC} \leq 6V$	-0.3	_	V _{CC} x 0.2	V

Potentiometer Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		-10 Device		10		
R_{POT}	Potentiometer Resistance	-50 Device		50		kΩ
		-00 Device		100		
	Pot. Resistance Tolerance				±20	%
V_{RH}	Voltage on R _H pin		0		V _{CC}	V
V_{RL}	Voltage on R _L pin		0		V _{CC}	V
	Resolution			1		%
INL	Integral Linearity Error	I _W ≤ 2μA		0.5	1	LSB
DNL	Differential Linearity Error	I _W ≤ 2μA		0.25	0.5	LSB
R _{out}	Buffer Output Resistance	$0.05V_{CC} \le V_{WB} \le 0.95V_{CC},$ $V_{CC} = 5V$			1	Ω
I _{оит}	Buffer Output Current	$0.05V_{CC} \le V_{WB} \le 0.95V_{CC},$ $V_{CC} = 5V$			3	mA
TC _{RPOT}	TC of Pot Resistance			300		ppm/°C
TC _{RATIO}	Ratiometric TC				20	ppm/°C
$C_{RH}/C_{RL}/C_{RW}$	Potentiometer Capacitances			8/8/25		pF
fc	Frequency Response	Passive Attenuator, 10kΩ		1.7		MHz
V _{WB(SWING)}	Output Voltage Range	$I_{OUT} \le 100 \mu A$, $V_{CC} = 5V$	0.01V _{CC}		0.99V _{CC}	

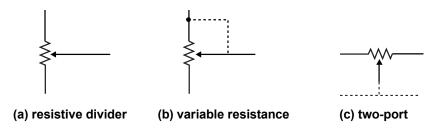
AC CONDITIONS OF TEST

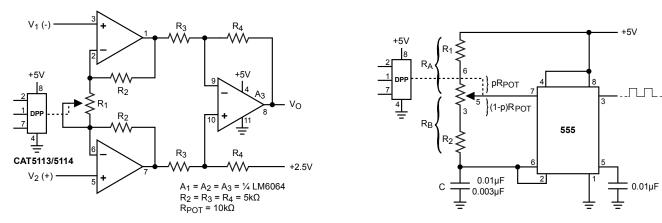

V _{CC} Range	$2.5V \le V_{CC} \le 6V$
Input Pulse Levels	$0.2V_{CC}$ to $0.7V_{CC}$
Input Rise and Fall Times	10ns
Input Reference Levels	0.5V _{CC}

AC OPERATING CHARACTERISTICS

 V_{CC} = +2.5V to +6.0V, V_{H} = V_{CC} , V_{L} = 0V, unless otherwise specified

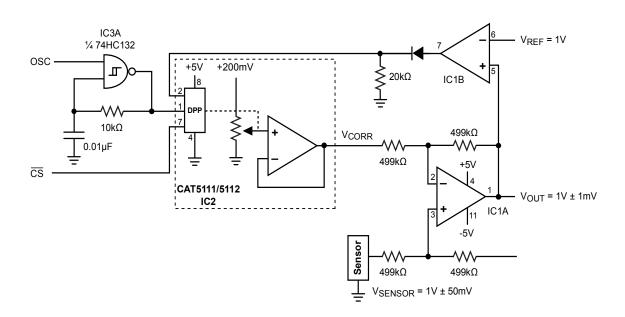
Symbol	Parameter	Min	Typ ⁽¹⁾	Max	Units
t _{CI}	CS to INC Setup	100	-	-	ns
t_{DI}	U/D to INC Setup	50	_	_	ns
t_{ID}	U/D to INC Hold	100	_	_	ns
t_IL	INC LOW Period	250	_	_	ns
t _{IH}	INC HIGH Period	250	-	_	ns
t _{IC}	INC Inactive to CS Inactive	1	_	_	μs
t _{CPH}	CS Deselect Time (NO STORE)	100	_	_	ns
t _{CPH}	CS Deselect Time (STORE)	10	_	_	ms
t _{IVV}	INC to V _{OUT} Change	_	1	5	μs
t _{CYC}	INC Cycle Time	1	_	_	μs
$t_R, t_F^{(2)}$	INC Input Rise and Fall Time	_	_	500	μs
t _{PU} ⁽²⁾	Power-up to Wiper Stable	_	_	1	ms
t _{WR}	Store Cycle	_	5	10	ms


A.C. TIMING

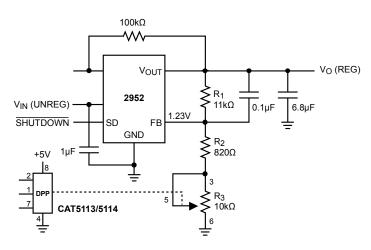

- (1) Typical values are for T_A = 25°C and nominal supply voltage.
- (2) This parameter is periodically sampled and not 100% tested.
- (3) MI in the A.C. Timing diagram refers to the minimum incremental change in the W output due to a change in the wiper position.

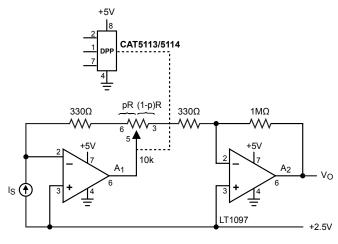
APPLICATIONS INFORMATION

Potentiometer Configuration

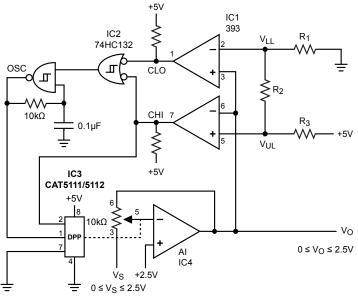

Applications

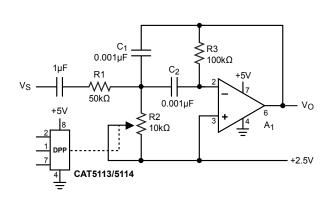
Programmable Instrumentation Amplifier


Programmable Sq. Wave Oscillator (555)

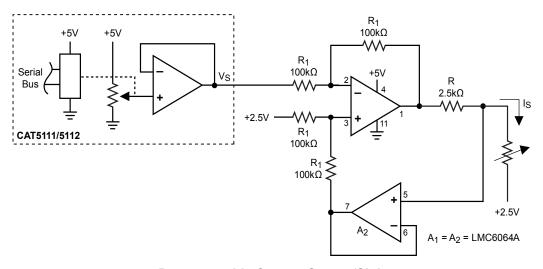

0.01µF

Sensor Auto Referencing Circuit

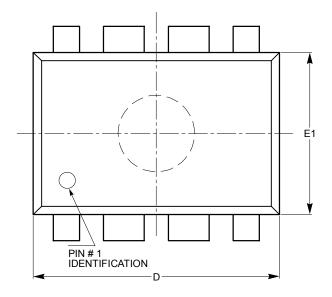

6



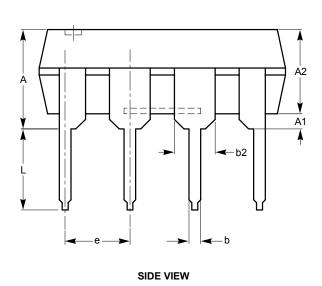
Programmable Voltage Regulator

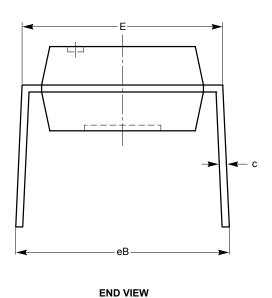

Programmable I to V Convertor

Automatic Gain Control


Programmable Bandpass Filter

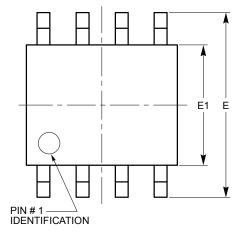
Programmable Current Source/Sink


PACKAGE OUTLINE DRAWINGS

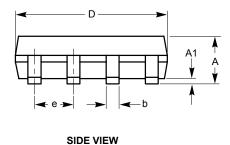

PDIP 8-Lead 300mils (L) $^{(1)(2)}$

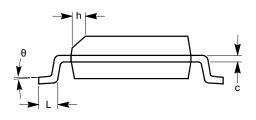
SYMBOL	MIN	NOM	MAX
Α			5.33
A1	0.38		
A2	2.92	3.30	4.95
b	0.36	0.46	0.56
b2	1.14	1.52	1.78
С	0.20	0.25	0.36
D	9.02	9.27	10.16
Е	7.62	7.87	8.25
е		2.54 BSC	
E1	6.10	6.35	7.11
eВ	7.87		10.92
L	2.92	3.30	3.80

TOP VIEW



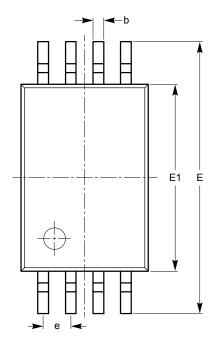
For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.


- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC standard MS-001.


SOIC 8-Lead 150mils (V) (1)(2)

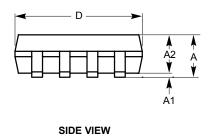
	SYMBOL	MIN	NOM	MAX
	Α	1.35		1.75
	A1	0.10		0.25
	b	0.33		0.51
	С	0.19		0.25
	D	4.80		5.00
	Е	5.80		6.20
ĺ	E1	3.80		4.00
ĺ	е		1.27 BSC	
ĺ	h	0.25		0.50
	L	0.40		1.27
Ī	θ	0°		8°

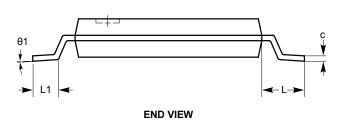
TOP VIEW



END VIEW

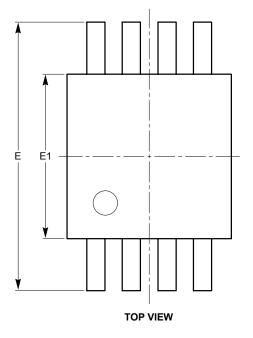
For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.

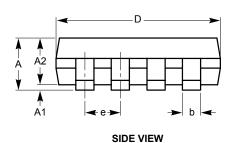

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC standard MS-012.

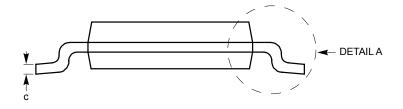

TSSOP 8-Lead (Y) (1)(2)

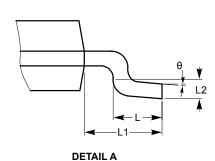
SYMBOL	MIN	NOM	MAX
Α			1.20
A1	0.05		0.15
A2	0.80	0.90	1.05
b	0.19		0.30
С	0.09		0.20
D	2.90	3.00	3.10
Е	6.30	6.40	6.50
E1	4.30	4.40	4.50
е		0.65 BSC	
L	1.00 REF		
L1	0.50	0.60	0.75
θ1	0°		8°

TOP VIEW

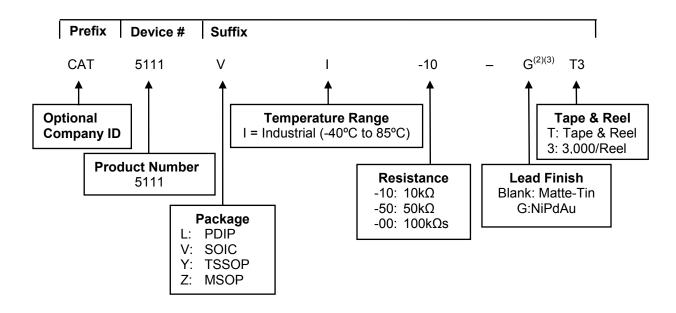



For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.


- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC standard MS-153.


MSOP 8-Lead 3.0 x 3.0mm (Z) $^{(1)(2)}$

SYMBOL	MIN	NOM	MAX
Α			1.10
A1	0.05	0.10	0.15
A2	0.75	0.85	0.95
b	0.22		0.38
С	0.13		0.23
D	2.90	3.00	3.10
Е	4.80	4.90	5.00
E1	2.90	3.00	3.10
е	0.65 BSC		
L	0.40	0.60	0.80
L1	0.95 REF		
L2	0.25 BSC		
θ	0°		6°



END VIEW

For current Tape and Reel information, download the PDF file from: http://www.catsemi.com/documents/tapeandreel.pdf.

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC standard MS-187.

EXAMPLE OF ORDERING INFORMATION

ORDERING PART NUMBER

Part Number	Resistance (kΩ)	Package-Pins	Lead Finish
CAT5111LI-10-G	10		
CAT5111LI-50-G	50	PDIP-8	NiPdAu
CAT5111LI-00-G	100		
CAT5111VI-10-G	10		
CAT5111VI-50-G	50	SOIC-8	NiPdAu
CAT5111VI-00-G	100		
CAT5111YI-10-G	10		
CAT5111YI-50-G	50	TSSOP-8	NiPdAu
CAT5111YI-00-G	100		
CAT5111ZI-10	10		
CAT5111ZI-50	50	MSOP-8	Matte-Tin
CAT5111ZI-00	100		

For Product Top Mark Codes, click here: http://www.catsemi.com/techsupport/producttopmark.asp

- (1) All packages are RoHS compliant.
- (2) Standard lead finish is NiPdAu, except MSOP package is Matte-Tin.
- (3) Contact factory for Matte-Tin finish availability for PDIP, SOIC and TSSOP packages.
- (4) This device used in the above example is a CAT5111VI-10-GT3 (SOIC, Industrial Temperature, 10kΩ, NiPdAu, Tape & Reel, 3,000/Reel).

REVISION HISTORY

Date	Rev.	Description	
10-Mar-04	М	Updated Potentiometer Parameters	
29-Mar-04	N	Changed Green Package marking for SOIC from W to V	
12-Apr-04	0	Updated Reel Ordering Information	
01-Jun-07	Р	Updated Example of Ordering Information Added Package Outline Added MD- in front of Document No.	
27-Mar-08	Q	Update Potentiometer Characteristics table Update Package Outline Drawings Update Example of Ordering Information Delete MSOP in NiPdAu plated finish Add Top Mark Codes link.	
20-Nov-08	R	Change logo and fine print to ON Semiconductor	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability any products nerein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center: Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative