Dual General Purpose Transistor

The MBT3906DW1T1 device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-363 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.

Features

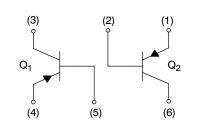
- h_{FE}, 100-300
- Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- Available in 8 mm, 7-inch/3,000 Unit Tape and Reel
- Pb-Free Package is Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	-40	Vdc
Collector - Base Voltage	V _{CBO}	-40	Vdc
Emitter – Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	Ι _C	-200	mAdc
Electrostatic Discharge	ESD	HBM Clas MM Clas	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Package Dissipation (Note 1) $T_A = 25^{\circ}C$	P _D	150	mW
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	833	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to +150	°C

1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.

ON Semiconductor®

http://onsemi.com

SOT-363/SC-88 CASE 419B STYLE 1

MARKING DIAGRAM

A2 = Device Code M = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MBT3906DW1T1	SOT-363	3000 Units/Reel
MBT3906DW1T1G	SOT-363 (Pb-Free)	3000 Units/Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

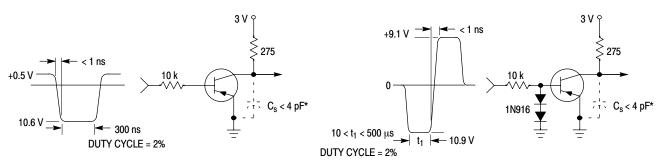
Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector - Emitter Breakdown Voltage (Note 2)	V _{(BR)CEO}	-40	-	Vdc
Collector - Base Breakdown Voltage	V _{(BR)CBO}	-40	-	Vdc
Emitter – Base Breakdown Voltage	V _{(BR)EBO}	-5.0	-	Vdc
Base Cutoff Current	I _{BL}	-	-50	nAdc
Collector Cutoff Current	I _{CEX}	-	-50	nAdc

ON CHARACTERISTICS (Note 2)

$\label{eq:constraint} \begin{array}{ c c c c } DC \ Current \ Gain \\ (I_C = -0.1 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ (I_C = -1.0 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ (I_C = -10 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ (I_C = -50 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ (I_C = -100 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \end{array}$	h _{FE}	60 80 100 60 30	- - 300 -	-
Collector – Emitter Saturation Voltage ($I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc}$) ($I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc}$)	V _{CE(sat)}	-	-0.25 -0.4	Vdc
Base – Emitter Saturation Voltage $(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$ $(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$	V _{BE(sat)}	-0.65 -	-0.85 -0.95	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current – Gain – Bandwidth Product	f _T	250	-	MHz
Output Capacitance	C _{obo}	-	4.5	pF
Input Capacitance	C _{ibo}	-	10.0	pF

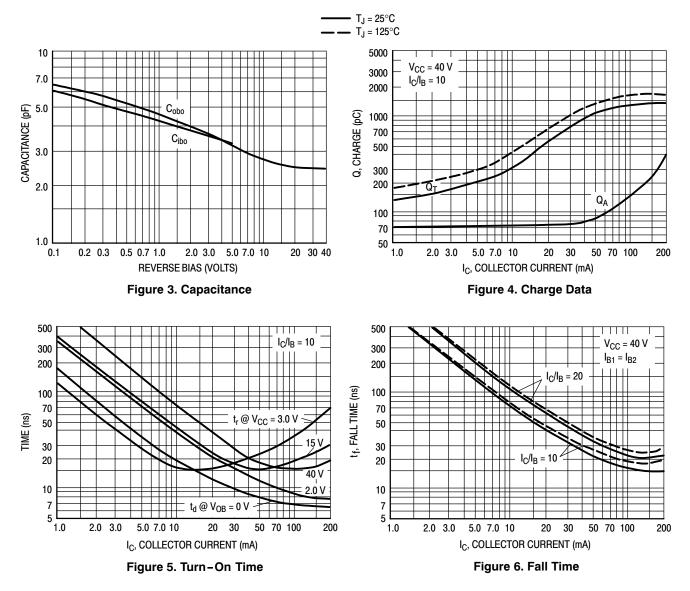

2. Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

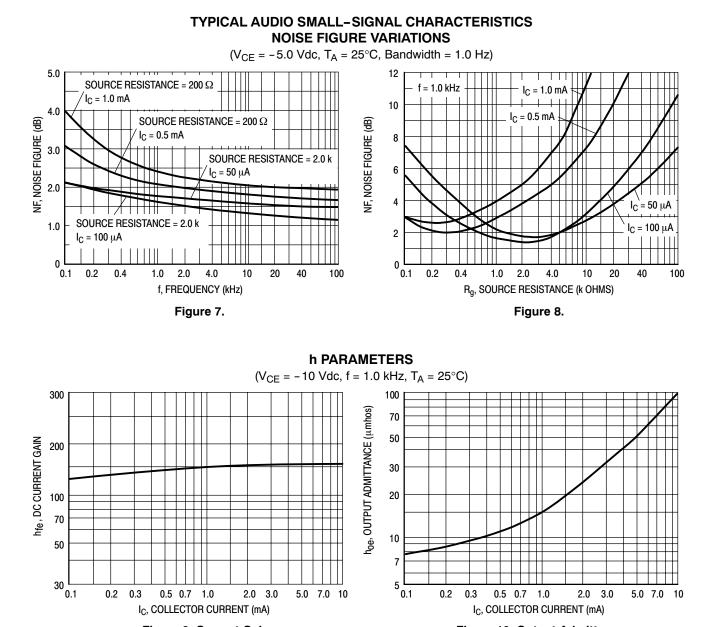
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit	
Input Impedance (V _{CE} = -10 Vdc, I _C = -1.0 mAdc, f = 1.0 kHz)	h _{ie}	2.0	12	kΩ	
Voltage Feedback Ratio (V _{CE} = -10 Vdc, I _C = -1.0 mAdc, f = 1.0 kHz)	h _{re}	0.1	10	X 10 ⁻⁴	
Small – Signal Current Gain (V _{CE} = -10 Vdc, I _C = -1.0 mAdc, f = 1.0 kHz)	h _{fe}	100	400	-	
Output Admittance (V _{CE} = -10 Vdc, I _C = -1.0 mAdc, f = 1.0 kHz)	h _{oe}	3.0	60	μmhos	
Noise Figure (V _{CE} = -5.0 Vdc, I _C = -100 μAdc, R _S = 1.0 k Ω, f = 1.0 kHz)	NF	-	4.0	dB	

SWITCHING CHARACTERISTICS

Delay Time	$(V_{CC} = -3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc})$	t _d	-	35	
Rise Time	$(I_{C} = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$	t _r	-	35	ns
Storage Time	$(V_{CC} = -3.0 \text{ Vdc}, I_C = -10 \text{ mAdc})$	t _s	-	225	
Fall Time	(I _{B1} = I _{B2} = -1.0 mAdc)	t _f	-	75	ns




* Total shunt capacitance of test jig and connectors

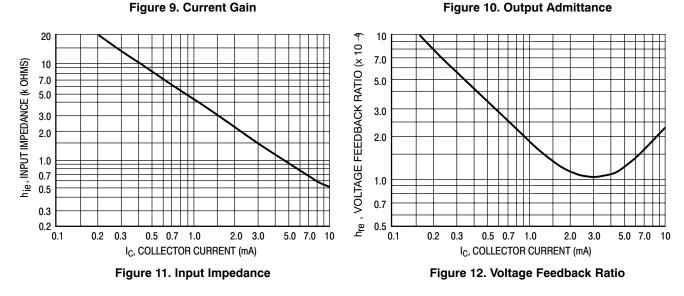
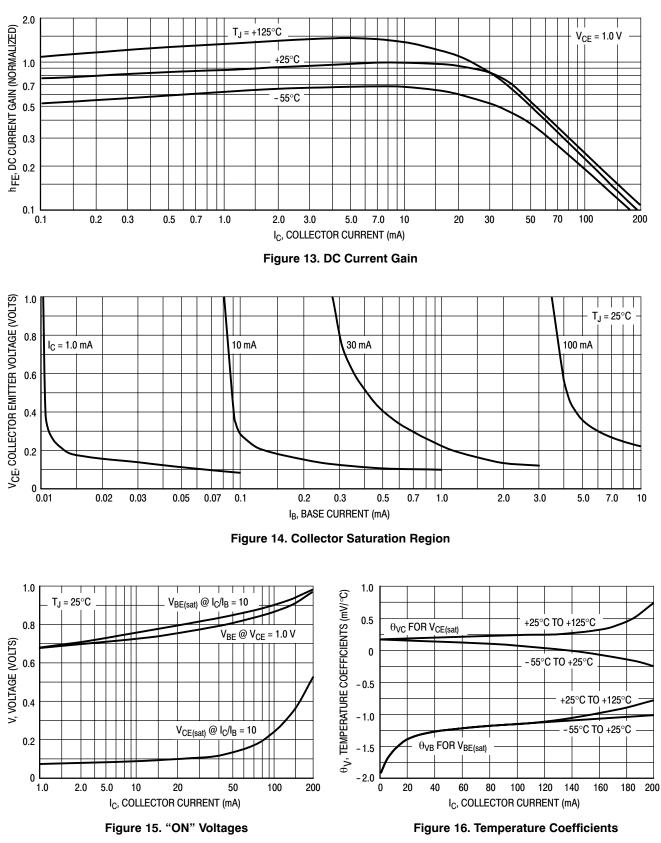
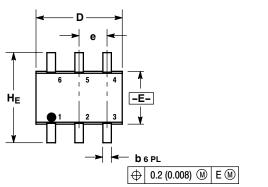
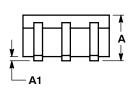
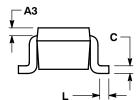

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit


TYPICAL TRANSIENT CHARACTERISTICS




TYPICAL STATIC CHARACTERISTICS



PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE W**

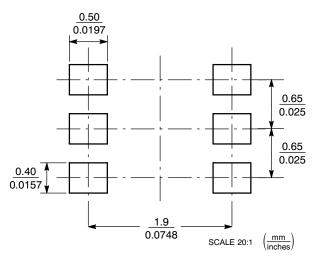
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	MIL	LIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.95	1.10	0.031	0.037	0.043	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A3		0.20 RE	F	(0.008 RI	EF	
b	0.10	0.21	0.30	0.004	0.008	0.012	
С	0.10	0.14	0.25	0.004	0.005	0.010	
D	1.80	2.00	2.20	0.070	0.078	0.086	
E	1.15	1.25	1.35	0.045	0.049	0.053	
е	0.65 BSC			0.026 BSC			
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	2.00	2.10	2.20	0.078	0.082	0.086	


STYLE 1: PIN 1. EMITTER 2

2. BASE 2 3. COLLECTOR 1

4. EMITTER 1 5. BASE 1

6. COLLECTOR 2

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights or other rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications and the provided in SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are some or the specifications are actively applications and actual performance may vary incidents and a specifications are actively applications and actual performance may vary incidents and and actively applications are actively applications and actual performance may vary and and and actively applications are actively applications and actual performance may vary and and actively applications are actively applications are actively applications and actual performance may vary and actively applications are actively applications and actual performance and actively applications are actively applications and actual performance and actively applications are actively applications and actual performance and actively applications and actual performance and actively applications are actively applications and actual performance and actively appl intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative