SN74LS253

Dual 4-Input Multiplexer with 3-State Outputs

The LSTTL/MSI SN74LS253 is a Dual 4-Input Multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable $\left(\overline{\mathrm{E}}_{0}\right)$ inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all ON Semiconductor TTL families.

- Schottky Process for High Speed
- Multifunction Capability
- Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	4.75	5.0	5.25	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High			-2.6	mA
I_{OL}	Output Current - Low			24	mA

ON Semiconductor ${ }^{\text {TM }}$
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
SN74LS253N	16 Pin DIP	2000 Units/Box
SN74LS253D	SOIC-16	38 Units/Rail
SN74LS253DR2	SOIC-16	2500/Tape \& Reel
SN74LS253M	SOEIAJ-16	See Note 1
SN74LS253MEL	SOEIAJ-16	See Note 1

1. For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES		LOADING (Note a)	
		HIGH	LOW
$\mathrm{S}_{0}, \mathrm{~S}_{1}$ Multiplexer A	Common Select Inputs	0.5	0.25 U.L
$\mathrm{E}_{0 \mathrm{a}}$	Output Enable (Active LOW) Input	0.5 U.	0.25 U.L
$\mathrm{I}_{0 \mathrm{a}}-\mathrm{I}_{3 \mathrm{a}}$	Multiplexer Inputs	0.5 U.L.	0.25 U.L
Z_{a}	Multiplexer Output	65 U.L.	15 U.L.
Multiplexer B			
$\mathrm{E}_{0 \mathrm{~b}}$	Output Enable (Active LOW) Input	0.5 U.L.	0.25 U.L
$\mathrm{I}_{0 \mathrm{~b}}-\mathrm{I}_{3 \mathrm{~b}}$	Multiplexer Inputs	0.5 U.L.	0.25
Z_{b}	Multiplexer Output	65 U.	15

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1. 6 mA LOW.

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS253 contains two identical 4-Input Multiplexers with 3-state outputs. They select two bits from four sources selected by common select inputs $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$. The 4 -input multiplexers have individual Output Enable ($\overline{\mathrm{E}}_{0 \mathrm{a}}, \overline{\mathrm{E}}_{0 \mathrm{~b}}$) inputs which when HIGH, forces the outputs to a high impedance (high Z) state.

If the outputs of 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers shouldensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap.

The LS253 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:
$Z_{a}=E_{0 a} \cdot\left(I_{0 a} \cdot \bar{S}_{1} \cdot \bar{S}_{0}+I_{1 a} \cdot \bar{S}_{1} \cdot S_{0} \cdot I_{2 a} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 a} \cdot S_{1} \cdot S_{0}\right)$
$Z_{b}=E_{0 b} \cdot\left(l_{0 b} S_{1} S_{0}+I_{1 b} \cdot S_{1} \cdot S_{0} I_{2 b} \cdot S_{1} \cdot S_{0}+I_{3 b} \cdot S_{1} \cdot S_{0}\right)$

TRUTH TABLE

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| Symbol | Parameter | | Limits | | | Test Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- | :--- |

2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$ See SN74LS251 for Waveforms

PACKAGE DIMENSIONS

N SUFFIX
PLASTIC PACKAGE
CASE 648-08
ISSUE R

PACKAGE DIMENSIONS

D SUFFIX

PLASTIC SOIC PACKAGE
CASE 751B-05
ISSUE J

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982 .
CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION $0.15(0.006)$ PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.05	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	$7{ }^{\circ}$	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS

M SUFFIX
SOEIAJ PACKAGE
CASE 966-01
ISSUE O

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER
2. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
3. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
4. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	-7	0.081
A_{1}	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
H_{E}	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
L_{E}	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q_{1}	0.70	0.90	0.028	0.035
Z	---	0.78	---	0.031

[^0] Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

[^0]: ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
 "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

