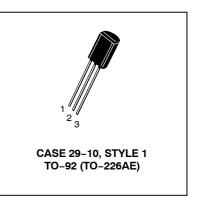
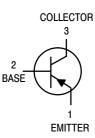
One Watt High Current Transistors PNP Silicon


• These devices are available in Pb-free package(s). Specifications herein apply to both standard and Pb-free devices. Please see our website at www.onsemi.com for specific Pb-free orderable part numbers, or contact your local ON Semiconductor sales office or representative.


MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector – Emitter Voltage	MPSW51 MPSW51A	V _{CEO}	-30 -40	Vdc
Collector – Base Voltage	MPSW51 MPSW51A	V _{CBO}	-40 -50	Vdc
Emitter-Base Voltage		V _{EBO}	-5.0	Vdc
Collector Current — Continuous		۱ _C	-1000	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C		P _D	1.0 8.0	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C		P _D	2.5 20	Watts mW/°C
Operating and Storage Junc Temperature Range	tion	T _J , T _{stg}	-55 to +150	°C

*ON Semiconductor Preferred Device

Max

Unit

Symbol

Min

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R_{\thetaJA}	125	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	50	°C/W

Characteristic

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

OFF CHARACTERISTICS

Collector – Emitter Breakdown Voltage ⁽¹⁾		V _{(BR)CEO}			Vdc
$(I_{\rm C} = -1.0 \text{ mAdc}, I_{\rm B} = 0)$	MPSW51 MPSW51A	(=)-=-	-30 -40	_	
Collector - Base Breakdown Voltage		V _{(BR)CBO}			Vdc
(I _C = -100 μAdc, I _E = 0)	MPSW51	· · /	-40	—	
	MPSW51A		-50	—	
Emitter – Base Breakdown Voltage		V _{(BR)EBO}	-5.0	_	Vdc
$(I_{E} = -100 \ \mu Adc, I_{C} = 0)$		· · /			
Collector Cutoff Current		I _{CBO}			μAdc
(V _{CB} = -30 Vdc, I _E = 0)	MPSW51			-0.1	
$(V_{CB} = -40 \text{ Vdc}, I_E = 0)$	MPSW51A		—	-0.1	
Emitter Cutoff Current		I _{EBO}	_	-0.1	μAdc
(V _{EB} = -3.0 Vdc, I _C = 0)					

1. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.

MPSW51 MPSW51A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

Characteristic		Min	Max	Unit
ON CHARACTERISTICS				
DC Current Gain ($I_C = -10 \text{ mAdc}$, $V_{CE} = -1.0 \text{ Vdc}$) ($I_C = -100 \text{ mAdc}$, $V_{CE} = -1.0 \text{ Vdc}$) ($I_C = -1000 \text{ mAdc}$, $V_{CE} = -1.0 \text{ Vdc}$)	h _{FE}	55 60 50		—
Collector – Emitter Saturation Voltage $(I_C = -1000 \text{ mAdc}, I_B = -100 \text{ mAdc})$	V _{CE(sat)}		-0.7	Vdc
Base – Emitter On Voltage (I _C = –1000 mAdc, V _{CE} = –1.0 Vdc)	V _{BE(on)}		-1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS			•	•
Current–Gain – Bandwidth Product ($I_C = -50$ mAdc, $V_{CE} = -10$ Vdc, f = 20 MHz)	fT	50	_	MHz
Output Capacitance $(1/2 - 10)$ (do $1 - 0$ f = 1.0 MHz)	C _{obo}		30	pF

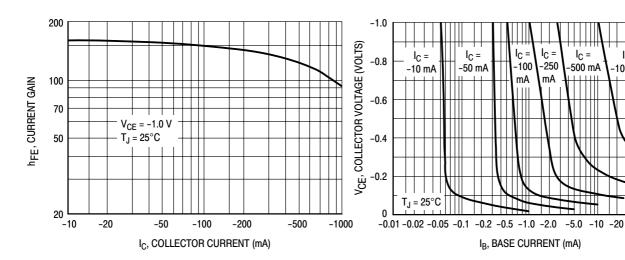


Figure 1. DC Current Gain

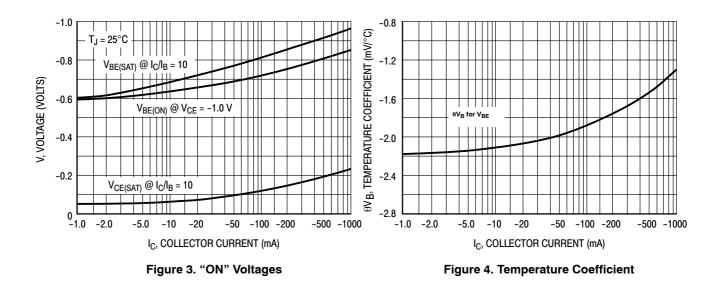
 $(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$

Figure 2. Collector Saturation Region

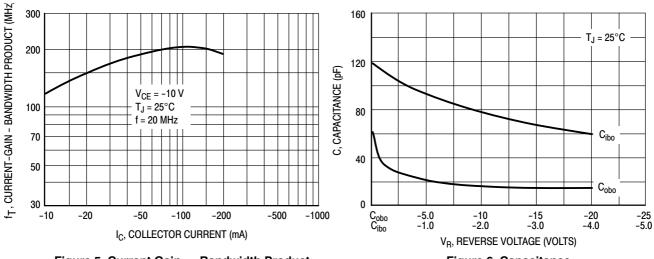
I_C =

-250

mA


I_C =

-500 mA


I_C =

-1000 mA

-50 -100

MPSW51 MPSW51A

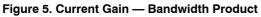


Figure 6. Capacitance

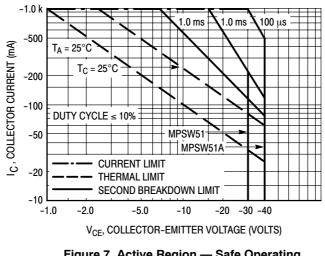
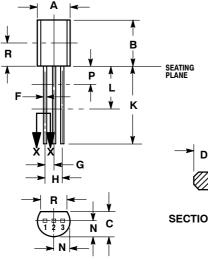



Figure 7. Active Region — Safe Operating Area

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-10 ISSUE AL

SECTION X-X

STYLE 1: PIN 1 EMITTER BASE 2 COLLECTOR NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

- Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
- 3. CONTOUR OF PACKAGE BEYOND DIMENSION R
- IS UNCONTROLLED. IS UNCONTROLLED. DIMENSION F APPLIES BETWEEN P AND L DIMENSIONS D AND J APPLY BETWEEN L AND K MIMIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIM	LIMETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.44	5.21	
В	0.290	0.310	7.37	7.87	
С	0.125	0.165	3.18	4.19	
D	0.018	0.021	0.457	0.533	
F	0.016	0.019	0.407	0.482	
G	0.045	0.055	1.15	1.39	
н	0.095	0.105	2.42	2.66	
J	0.018	0.024	0.46	0.61	
κ	0.500		12.70		
Г	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Ρ		0.100		2.54	
R	0.135		3.43		

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILC does not convey any license under its patent rights or the rights of others. SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications. Buyer purchase or use SCILLC products for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.