## MAC4DHM

## Preferred Device

## Sensitive Gate Triacs

## Silicon Bidirectional Thyristors

Designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control.

- Small Size Surface Mount DPAK Package
- Passivated Die for Reliability and Uniformity
- Four-Quadrant Triggering
- Blocking Voltage to 600 V
- On-State Current Rating of 4.0 Amperes RMS at $93^{\circ} \mathrm{C}$
- Low Level Triggering and Holding Characteristics
- Device Marking: Device Type with "M" truncated, e.g., MAC4DHM: AC4DHM, Date Code

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

| Rating | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: |
| Peak Repetitive Off-State Voltage(1) ( $T_{J}=-40$ to $110^{\circ} \mathrm{C}$, Sine Wave, 50 to 60 Hz , Gate Open) <br> MAC4DHM | VDRM, $V_{\text {RRM }}$ | 600 | Volts |
| On-State RMS Current (Full Cycle Sine Wave, 60 Hz , ${ }^{T} \mathrm{C}=93^{\circ} \mathrm{C}$ ) | ${ }^{\text {IT(RMS }}$ ) | 4.0 | Amps |
| Peak Non-Repetitive Surge Current (One Full Cycle, $60 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{J}}=110^{\circ} \mathrm{C}$ ) | ITSM | 40 | Amps |
| Circuit Fusing Consideration ( $\mathrm{t}=8.3 \mathrm{msec}$ ) | ${ }^{2} \mathrm{t}$ | 6.6 | $\mathrm{A}^{2} \mathrm{sec}$ |
| Peak Gate Power (Pulse Width $\leq 10 \mu \mathrm{sec}, \mathrm{T}_{\mathrm{C}}=93^{\circ} \mathrm{C}$ ) | PGM | 0.5 | Watts |
| Average Gate Power $\left(\mathrm{t}=8.3 \mathrm{msec}, \mathrm{~T}^{\mathrm{C}}=93^{\circ} \mathrm{C}\right)$ | $\mathrm{P}_{\mathrm{G}}(\mathrm{AV})$ | 0.1 | Watts |
| Peak Gate Current <br> (Pulse Width $\leq 10 \mu \mathrm{sec}, \mathrm{T}_{\mathrm{C}}=93^{\circ} \mathrm{C}$ ) | IGM | 0.2 | Amps |
| Peak Gate Voltage (Pulse Width $\leq 10 \mu \mathrm{sec}, \mathrm{T}_{\mathrm{C}}=93^{\circ} \mathrm{C}$ ) | $\mathrm{V}_{\mathrm{GM}}$ | 5.0 | Volts |
| Operating Junction Temperature Range | TJ | -40 to 110 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $\mathrm{T}_{\text {stg }}$ | -40 to 150 | ${ }^{\circ} \mathrm{C}$ |

(1) $V_{\text {DRM }}$ and $V_{\text {RRM }}$ for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the device are exceeded.

## ON Semiconductor

http://onsemi.com

## TRIACS 4.0 AMPERES RMS 600 VOLTS

MT2



D-PAK CASE 369 STYLE 6


D-PAK CASE 369A STYLE 6

| PIN ASSIGNMENT |  |
| :---: | :---: |
| 1 | Main Terminal 1 |
| 2 | Main Terminal 2 |
| 3 | Gate |
| 4 | Main Terminal 2 |

ORDERING INFORMATION

| Device | Package | Shipping |
| :---: | :---: | :---: |
| MAC4DHMT4 | DPAK 369A | 16 mm Tape <br> and Reel <br> $(2.5 \mathrm{~K} /$ Reel $)$ |
| MAC4DHM-1 | DPAK 369 | 75 Units/Rail |

Preferred devices are recommended choices for future use and best overall value.

MAC4DHM

THERMAL CHARACTERISTICS

| Characteristic | Symbol | Max | Unit |
| :--- | :---: | :---: | :---: |
| Thermal Resistance — Junction to Case | $R_{\theta J \mathrm{C}}$ | 3.5 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| — Junction to Ambient | $R_{\theta J A}$ | 88 |  |
| - Junction to Ambient $(1)$ | $R_{\theta J A}$ | 80 |  |
| Maximum Lead Temperature for Soldering Purposes(2) | $\mathrm{T}_{\mathrm{L}}$ | 260 | ${ }^{\circ} \mathrm{C}$ |

(1) Surface mounted on minimum recommended pad size.
(2) $1 / 8^{\prime \prime}$ from case for 10 seconds.

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted; Electricals apply in both directions)

| Characteristic |  | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OFF CHARACTERISTICS |  |  |  |  |  |  |
| Peak Repetitive Blocking Current ( $\mathrm{V}_{\mathrm{D}}=$ Rated $\mathrm{V}_{\mathrm{DRM}}, \mathrm{V}_{\mathrm{RRM}}$; Gate Open) | $\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=110^{\circ} \mathrm{C} \end{aligned}$ | IDRM, IRRM | - | - | 0.01 2.0 | mA |

ON CHARACTERISTICS

| Peak On-State Voltage (1) $(\mathrm{ITM}= \pm 6.0 \mathrm{~A})$ | $\mathrm{V}_{\text {TM }}$ | - | 1.3 | 1.6 | Volts |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ```Gate Trigger Current (Continuous dc) ( \(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega\) ) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)``` | IGT | $\begin{aligned} & - \\ & - \\ & - \end{aligned}$ | $\begin{aligned} & 1.8 \\ & 2.1 \\ & 2.4 \\ & 4.2 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \\ & 10 \end{aligned}$ | mA |
| ```Gate Trigger Voltage (Continuous dc) ( \(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega\) ) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)``` | $\mathrm{V}_{\mathrm{GT}}$ | $\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.57 \\ & 0.65 \\ & 0.74 \end{aligned}$ | $\begin{aligned} & 1.3 \\ & 1.3 \\ & 1.3 \\ & 1.3 \end{aligned}$ | Volts |
| Gate Non-Trigger Voltage (Continuous dc) $\left(V_{D}=12 \mathrm{~V}, R_{L}=100 \Omega, \mathrm{~T}_{\mathrm{J}}=110^{\circ} \mathrm{C}\right)$ <br> All Four Quadrants | $\mathrm{V}_{\mathrm{GD}}$ | 0.1 | 0.4 | - | Volts |
| Holding Current <br> ( $\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}$, Gate Open, Initiating Current $= \pm 200 \mathrm{~mA}$ ) | ${ }^{\text {I }}$ | - | 1.5 | 15 | mA |
| Latching Current $\begin{array}{ll} \text { MT2(+), } \mathrm{G}(+) & \left(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=5.0 \mathrm{~mA}\right) \\ \text { MT2(+), } \mathrm{G}(-) & \left(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=5.0 \mathrm{~mA}\right) \\ \text { MT2(-), G(-) } & \left(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=5.0 \mathrm{~mA}\right) \\ \text { MT2(-), G(+) } & \left(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}\right) \end{array}$ | IL | - | $\begin{gathered} 1.75 \\ 5.2 \\ 2.1 \\ 2.2 \end{gathered}$ | 10 10 10 10 | mA |

DYNAMIC CHARACTERISTICS

| Characteristic | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rate of Change of Commutating Current $\begin{aligned} & \left(V_{D}=200 \mathrm{~V}, \mathrm{ITM}=1.8 \mathrm{~A}, \text { Commutating dv/dt }=1.0 \mathrm{~V} / \mathrm{usec},\right. \\ & \mathrm{T}_{\mathrm{J}}=110^{\circ} \mathrm{C}, \mathrm{f}=250 \mathrm{~Hz}, \mathrm{CL}=5.0 \mu \mathrm{fd}, \mathrm{LL}=80 \mathrm{mH}, \mathrm{RS}=56 \Omega \text {, } \\ & \mathrm{CS}=0.03 \mu \mathrm{fd}) \text { With snubber see Figure } 11 \end{aligned}$ | di/dt(c) | - | 3.0 | - | A/ms |
| Critical Rate of Rise of Off-State Voltage $\left(V_{D}=0.67 \mathrm{X}\right.$ Rated $\mathrm{V}_{\mathrm{DRM}}$, Exponential Waveform, Gate Open, $T_{J}=110^{\circ} \mathrm{C}$ ) | dv/dt | 20 | - | - | V/us |

(1) Pulse Test: Pulse Width $\leq 2.0 \mathrm{msec}$, Duty Cycle $\leq 2 \%$.

## MAC4DHM

## Voltage Current Characteristic of Triacs

(Bidirectional Device)


Quadrant Definitions for a Triac


All polarities are referenced to MT1.
With in-phase signals (using standard AC lines) quadrants I and III are used.

## MAC4DHM



Figure 1. RMS Current Derating


Figure 3. On-State Characteristics


Figure 5. Typical Gate Trigger Current versus Junction Temperature


Figure 2. On-State Power Dissipation


Figure 4. Transient Thermal Response


Figure 6. Typical Gate Trigger Voltage versus Junction Temperature


Figure 7. Typical Holding Current versus Junction Temperature


Figure 9. Minimum Exponential Static dv/dt versus Gate-MT1 Resistance


Figure 8. Typical Latching Current versus Junction Temperature


Figure 10. Typical Critical Rate of Rise of Commutating Voltage


Note: Component values are for verification of rated $(\mathrm{di} / \mathrm{dt})_{\mathrm{c}}$. See AN1048 for additional information.
Figure 11. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)c

## MAC4DHM

## MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection
interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.


## MAC4DHM

## PACKAGE DIMENSIONS

D-PAK<br>CASE 369-07<br>ISSUE L



NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.
CONTROLLING DIMENSION: INCH

| DIM | INCHES |  | MILLIMETERS |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | 0.235 | 0.250 | 5.97 | 6.35 |
| B | 0.250 | 0.265 | 6.35 | 6.73 |
| C | 0.086 | 0.094 | 2.19 | 2.38 |
| D | 0.027 | 0.035 | 0.69 | 0.88 |
| E | 0.033 | 0.040 | 0.84 | 1.01 |
| F | 0.037 | 0.047 | 0.94 | 1.19 |
| G | 0.090 BSC |  | 2.29 BSC |  |
| H | 0.034 | 0.040 | 0.87 | 1.01 |
| J | 0.018 | 0.023 | 0.46 | 0.58 |
| K | 0.350 | 0.380 | 8.89 | 9.65 |
| R | 0.175 | 0.215 | 4.45 | 5.46 |
| S | 0.050 | 0.090 | 1.27 | 2.28 |
| V | 0.030 | 0.050 | 0.77 | 1.27 |

PIN 1. MT1
2. MT2
3. GATE
4. MT2

## D-PAK <br> CASE 369A-13 <br> ISSUE Z



NOTES:

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

|  | INCHES |  | MILLIMETERS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX |  |  |
| A | 0.235 | 0.250 | 5.97 | 6.35 |  |  |
| B | 0.250 | 0.265 | 6.35 | 6.73 |  |  |
| C | 0.086 | 0.094 | 2.19 | 2.38 |  |  |
| D | 0.027 | 0.035 | 0.69 | 0.88 |  |  |
| E | 0.033 | 0.040 | 0.84 | 1.01 |  |  |
| F | 0.037 | 0.047 | 0.94 | 1.19 |  |  |
| G | 0.180 |  | BSC | 4.58 BSC |  |  |
| H | 0.034 | 0.040 | 0.87 |  |  |  |
| J | 0.018 | 0.023 | 1.01 |  |  |  |
| K | 0.102 | 0.114 | 2.60 |  |  |  |
| L | 0.090 |  | BSC | 2.29 |  | BSC |
| R | 0.175 | 0.215 | 4.45 | 5.46 |  |  |
| S | 0.020 | 0.050 | 0.51 |  |  |  |
| U | 0.020 | - | 1.27 |  |  |  |
| V | 0.030 | 0.050 | 0.71 |  |  |  |
| Z | 0.138 | - | - |  |  |  |

STYLE 6:
PIN 1. MT1
2. MT2
2. MT2
3. GATE
4. MT2

## MAC4DHM

ON Semiconductor and $\square$ are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

## PUBLICATION ORDERING INFORMATION

## NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (M-F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com
EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, England, Ireland

## CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore:

## 001-800-4422-3781

Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

