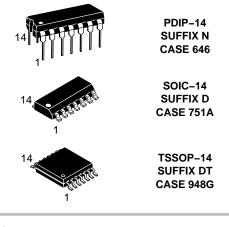
Hex Inverter Schmitt Trigger

The MC74AC14/74ACT14 contains six logic inverters which accept standard CMOS Input signals (TTL levels for MC74ACT14) and provide standard CMOS output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin then conventional inverters.

The MC74AC14/74ACT14 has hysteresis between the positive-going and negative-going input thresholds (typically 1.0 V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.

Features

- Schmitt Trigger Inputs
- Outputs Source/Sink 24 mA
- MC74ACT14 Has TTL Compatible Inputs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant


MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
DC Supply Voltage (Referenced to GND)	V _{CC}	-0.5 to +7.0	V
DC Input Voltage (Referenced to GND)	V _{in}	–0.5 to V _{CC} +0.5	V
DC Output Voltage (Referenced to GND)	V _{out}	–0.5 to V _{CC} +0.5	V
DC Input Current, per Pin	l _{in}	±20	mA
DC Output Sink/Source Current, per Pin	I _{out}	±50	mA
DC V_{CC} or GND Current per Output Pin	I _{CC}	±50	°C
Storage Temperature	T _{stg}	-65 to +150	mJ

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

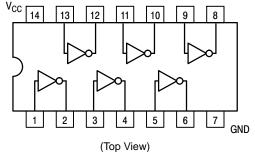


Figure 1. Pinout: 14-Lead Packages Conductors

FUNCTIO	FUNCTION TABLE						
Input Output							
Α	0						
L	H						
Н	L						

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 4 of this data sheet.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit	
N/	Current v Velkenne	Ϋ́ΑC	2.0	5.0	6.0	N
V _{CC}	Supply Voltage	ΆCΤ	4.5	5.0	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Ref. to GND)		0	_	V _{CC}	V
		V _{CC} @ 3.0 V	-	150	-	
t _r , t _f	Input Rise and Fall Time (Note 1)	V _{CC} @ 4.5 V	_	40	-	ns/V
	'AC Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	25	-	
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	_	10	-	
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	-	ns/V
TJ	Junction Temperature (PDIP)		-	_	140	°C
T _A	Operating Ambient Temperature Range		-40	25	85	°C
I _{OH}	Output Current – High	-	-	-24	mA	
I _{OL}	Output Current – Low		-	_	24	mA

V_{in} from 30% to 70% V_{CC}; see individual Data Sheets for devices that differ from the typical input rise and fall times.
 V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

		74AC 74AC		74AC			
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = −40°C to +85°C	Unit	Conditions
		(.,	Тур	Gi	uaranteed Limits		
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
		3.0 4.5 5.5	- - -	2.56 3.86 4.86	2.46 3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -12 mA I _{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	I _{OUT} = 50 μA
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	_	±0.1	±1.0	μΑ	$V_{I} = V_{CC}, GND$
I _{OLD}	†Minimum Dynamic Output Current	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}		5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	4.0	40	μΑ	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time. NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

			74AC			74AC			
Symbol	Symbol Parameter		T _A = +2	25°C C _L =	= 50 pF	T _A = -4 +85°C C _I	40°C to _ = 50 pF	Unit	Figure No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay	3.3 5.0	1.5 1.5	9.5 7.0	13.5 10.0	1.5 1.5	15.0 11.0	ns	3–5
t _{PHL}	Propagation Delay	3.3 5.0	1.5 1.5	7.5 6.0	11.5 8.5	1.5 1.5	13.0 9.5	ns	3–5

*Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

INPUT CHARACTERISTICS (unless otherwise specified)

Symbol	Parameter	V _{CC} (V)	74AC	74ACT		Test Conditions
V _{t +}	Maximum Positive Threshold	3.0 4.5 5.5	2.2 3.2 3.9	- 2.0 2.0	V	T _A = Worst Case
V _{t –}	Minimum Negative Threshold	3.0 4.5 5.5	0.5 0.9 1.1	- 0.8 0.8	V	T _A = Worst Case
V _{h(max)}	Maximum Hysteresis	3.0 4.5 5.5	1.2 1.4 1.6	- 1.2 1.2	V	T _A = Worst Case
V _{h(min)}	Minimum Hysteresis	3.0 4.5 5.5	0.3 0.4 0.5	- 0.4 0.4	V	T _A = Worst Case

DC CHARACTERISTICS

		74ACT 74ACT		74ACT			
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		$T_A = -40^{\circ}C$ to +85°C	Unit	Conditions
		(,,	Тур	G	uaranteed Limits		
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} -24 \text{ mA}$ -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.44 0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ 24 mA V_{OL} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_{I} = V_{CC}, GND$
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 V$
I _{OLD}	†Minimum Dynamic Output Current	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}		5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	4.0	40	μΑ	$V_{IN} = V_{CC} \text{ or } GND$

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

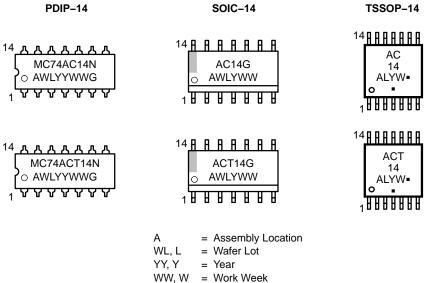
AC CHARACTERISTICS (For Figures and Waveforms – See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74ACT		74A	СТ		
Symbol	Parameter	V _{CC} * (V)					Unit	Figure No.	
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay	5.0	1.5	-	11.5	1.0	12.5	ns	3–5
t _{PHL}	Propagation Delay	5.0	1.5	-	10.0	1.0	11.0	ns	3–5

*Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0 V$
C _{PD}	Power Dissipation Capacitance	25	pF	V _{CC} = 5.0 V

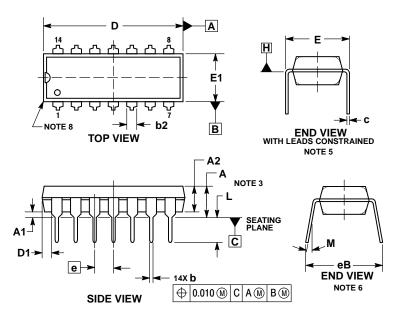

ORDERING INFORMATION

Device	Package	Shipping [†]		
MC74AC14NG	PDIP-14 (Pb-Free)	of Unite / Deil		
MC74ACT14NG	PDIP-14 (Pb-Free)	- 25 Units / Rail		
MC74AC14DG	SOIC-14 (Pb-Free)	55 Units / Rail		
MC74AC14DR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel		
NLV74AC14DR2G*	SOIC-14 (Pb-Free)	2500 / Tape & Reel		
MC74ACT14DG	SOIC-14 (Pb-Free)	55 Units / Rail		
MC74ACT14DR2G	SOIC-14 (Pb-Free)			
MC74AC14DTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel		
MC74ACT14DTR2G	TSSOP-14 (Pb-Free)			

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

MARKING DIAGRAMS

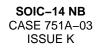


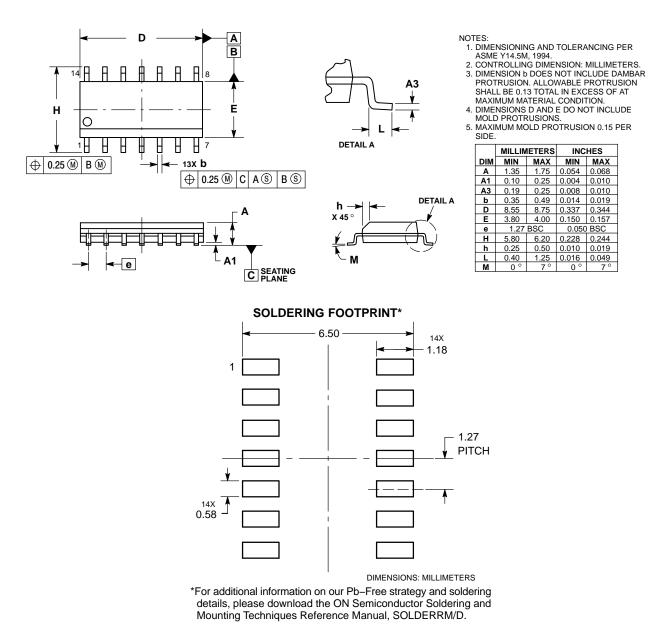
G or = Pb–Free Package

(Note: Microdot may be in either location)

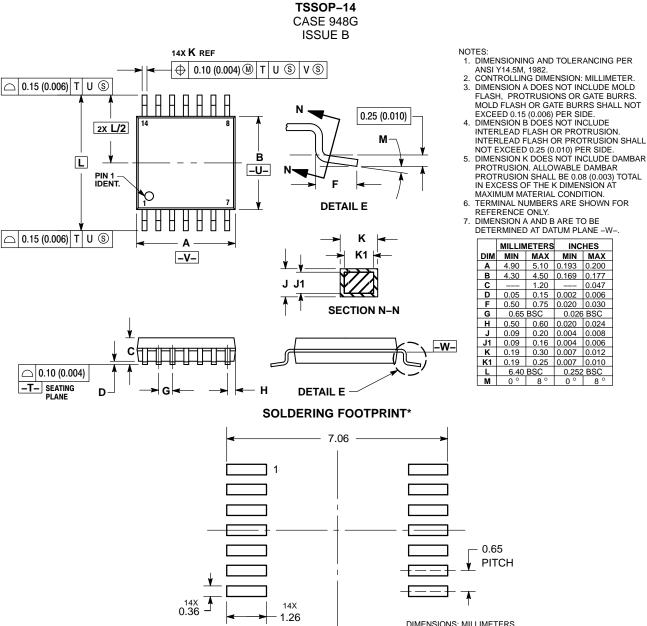
PACKAGE DIMENSIONS

PDIP-14 CASE 646-06 **ISSUE R**




- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
 DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
 DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
 DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
 PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

 - CORNERS).


001112110)							
	INC	HES	MILLIM	ETERS			
DIM	MIN	MAX	MIN	MAX			
Α		0.210		5.33			
A1	0.015		0.38				
A2	0.115	0.195	2.92	4.95			
b	0.014	0.022	0.35	0.56			
b2	0.060) TYP	1.52 TYP				
С	0.008	0.014	0.20	0.36			
D	0.735	0.775	18.67	19.69			
D1	0.005		0.13				
Е	0.300	0.325	7.62	8.26			
E1	0.240	0.280	6.10	7.11			
е	0.100	BSC	2.54	BSC			
eB		0.430		10.92			
L	0.115	0.150	2.92	3.81			
М		10°		10°			

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

MILLIMETERS INCHES DIM MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 1.20 0.047
 0.05
 0.15
 0.002
 0.006

 0.50
 0.75
 0.020
 0.030

0.65 BSC

0.026 BSC

0.252 BSC

8 0

0 °

0.19 0.25 0.007 0.010 6.40 BSC 0 ° 8° 0.65 PITCH

ON Semiconductor and the unarrest are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative