Surface Mount Schottky Power Rectifier

SMB Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J–Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop
- Pb–Free Package May be Available. The G–Suffix Denotes a Pb–Free Lead Finish

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL94, VO at 1/8"
- Weight: 95 mg (approximately)
- Maximum Temperature of 260°C / 10 Seconds for Soldering
- Cathode Polarity Band
- Available in 12 mm Tape, 2500 Units per 13 inch Reel, Add "T3" Suffix to Part Number
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Marking: BKJL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	Vrrm V _{RWM} Vr	40	V	
Average Rectified Forward Current (At Rated V_R , $T_C = 103^{\circ}C$)	IO	l _O 2.0		
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = 104°C)	IFRM	4.0	A	
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	IFSM	70	A	
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C	
Operating Junction Temperature	TJ -55 to +125		°C	
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	dv/dt 10,000		

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 2.0 AMPERES 40 VOLTS

SMB CASE 403A PLASTIC

MARKING DIAGRAM

BKJL = Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]	
MBRS2040LT3	SMB	2500/Tape & Reel	
MBRS2040LT3G	SMB (Pb–Free)	2500/Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction-to-Lead (Note 1.)	R _{θJL}	22.5	°C/W
Thermal Resistance — Junction-to-Ambient (Note 2.)	$R_{\theta JA}$	78	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3.)		٧F	T _J = 25°C	T _J = 125°C	Volts
see Figure 2	(I _F = 2.0 A) (I _F = 4.0 A)		0.43 0.50	0.34 0.45	
Maximum Instantaneous Reverse Current (Note 3.) $(V_R = 40 \text{ V})$ see Figure 4 $(V_R = 20 \text{ V})$		IR	TJ = 25°C	TJ = 100°C	mA
	(V _R = 40 V) (V _R = 20 V)		0.8 0.1	20 6.0	

1. Minimum pad size (0.108 X 0.085 inch) for each lead on FR4 board.2. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.3. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2.0%.

Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where r(t) = thermal impedance under given conditions, T_J may be calculated from the equation:

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

