

Complementary Silicon Plastic Power Transistors

TIP29, A, B, C (NPN), TIP30, A, B, C (PNP)

Designed for use in general purpose amplifier and switching applications. Compact TO-220 package.

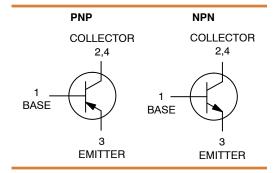
Features

• These Devices are Pb-Free and are RoHS Compliant*

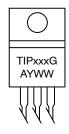
MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V _{CEO}	Collector – Emitter Voltage TIP29G, TIP30G TIP29AG, TIP30AG TIP29BG, TIP30BG TIP29CG, TIP30CG	40 60 80 100	Vdc
V _{CB}	Collector – Base Voltage TIP29G, TIP30G TIP29AG, TIP30AG TIP29BG, TIP30BG TIP29CG, TIP30CG	40 60 80 100	Vdc
V _{EB}	Emitter – Base Voltage	5.0	Vdc
I _C	Collector Current – Continuous	1.0	Adc
I _{CM}	Collector Current - Peak	3.0	Adc
I _B	Base Current	0.4	Adc
P _D	Total Power Dissipation @ T _C = 25°C Derate above 25°C	30 0.24	W W/°C
P _D	Total Power Dissipation @ T _A = 25°C Derate above 25°C	2.0 0.016	W W/°C
E	Unclamped Inductive Load Energy (Note 1)	32	mJ
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. This rating based on testing with L_C = 20 mH, R_{BE} = 100 $\Omega,$ V_CC = 10 V, I_C = 1.8 A, P.R.F = 10 Hz

THERMAL CHARACTERISTICS


Symbol	Characteristic	Max	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	4.167	°C/W

1 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 40, 60, 80, 100 VOLTS, 80 WATTS

MARKING DIAGRAM

TIPxxx = Device Code:

29, 29A, 29B, 29C

30, 30A, 30B, 30C

Assembly Location

= Year

WW = Work Week

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, <u>SOLDERRM/D</u>.

TIP29, A, B, C (NPN), TIP30, A, B, C (PNP)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

(I _C = 30 mAdc, I _B = 0) (Note 2) TiP29G, TiP30G	Symbol	Characteristic	Min	Max	Unit
Collector Cutoff Current (Voc = 40 Vdc, Ven = 0)	FF CHARA	CTERISTICS		•	•
VCE = 30 Vdc, I _B = 0)	V _{CEO(sus)}	(I _C = 30 mAdc, I _B = 0) (Note 2) TIP29G, TIP30G TIP29AG, TIP30AG TIP29BG, TIP30BG	60 80	- - - -	Vdc
	I _{CEO}	$(V_{CE} = 30 \text{ Vdc}, I_B = 0)$ TIP29G, TIP29AG, TIP30G, TIP30AG $(V_{CE} = 60 \text{ Vdc}, I_B = 0)$	-		mAdc
$(V_{BE} = 5.0 \text{Vdc}, I_{C} = 0) \qquad - \qquad 1.0$ $(V_{BE} = 5.0 \text{Vdc}, I_{C} = 0) \qquad - \qquad 1.0$ $(V_{BE} = 5.0 \text{Vdc}, I_{C} = 0) \qquad - \qquad 1.0$ $(V_{BE} = 5.0 \text{Vdc}, I_{C} = 0) \qquad - \qquad 1.0$ $(V_{BE} = 5.0 \text{Vdc}, I_{C} = 0) \qquad - \qquad 1.0$ $(V_{BE} = 5.0 \text{Vdc}, I_{C} = 0) \qquad - \qquad 1.0$ $(V_{BE} = 5.0 \text{Vdc}, I_{C} = 0) \qquad - \qquad 1.0$ $(V_{BE} = 5.0 \text{Vdc}, I_{C} = 4.0 \text{Vdc}) \qquad - \qquad 40 \qquad - \qquad $	I _{CES}	$(V_{CE} = 40 \text{ Vdc}, V_{EB} = 0)$ TIP29G, TIP30G $(V_{CE} = 60 \text{ Vdc}, V_{EB} = 0)$ TIP29AG, TIP30AG $(V_{CE} = 80 \text{ Vdc}, V_{EB} = 0)$ TIP29BG, TIP30BG $(V_{CE} = 100 \text{ Vdc}, V_{EB} = 0)$	- - -	200 200	μAdc
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{EBO}		_	1.0	mAdc
$ \begin{pmatrix} (I_{C} = 0.2 \text{ Adc, } V_{CE} = 4.0 \text{ Vdc}) & 40 & - \\ (I_{C} = 1.0 \text{ Adc, } V_{CE} = 4.0 \text{ Vdc}) & 15 & 75 \\ \end{pmatrix} $ $ V_{CE(sat)} \begin{pmatrix} \text{Collector-Emitter Saturation Voltage} \\ (I_{C} = 1.0 \text{ Adc, } I_{B} = 125 \text{ mAdc}) & - & 0.7 \\ \end{pmatrix} $ $ V_{BE(on)} \begin{pmatrix} \text{Base-Emitter On Voltage} \\ (I_{C} = 1.0 \text{ Adc, } V_{CE} = 4.0 \text{ Vdc}) & - & 1.3 \\ \end{pmatrix} $ $ V_{NAMIC CHARACTERISTICS} \begin{pmatrix} \text{Current-Gain - Bandwidth Product (Note 3)} \\ (I_{C} = 200 \text{ mAdc, } V_{CE} = 10 \text{ Vdc, } f_{test} = 1.0 \text{ MHz}) & 3.0 & - \\ \end{pmatrix} $ $ h_{fe} \begin{pmatrix} \text{Small-Signal Current Gain} \end{pmatrix} $	N CHARAC	TERISTICS (Note 2)		1	
$(I_{C} = 1.0 \text{ Adc, } I_{B} = 125 \text{ mAdc}) $	h _{FE}	(I _C = 0.2 Adc, V _{CE} = 4.0 Vdc)		- 75	-
$(I_{C} = 1.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$ $= 1.3$ $DYNAMIC CHARACTERISTICS$ $f_{T} \qquad \begin{array}{c} \text{Current-Gain - Bandwidth Product (Note 3)} \\ (I_{C} = 200 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1.0 \text{ MHz}) \\ \end{array}$ $= 3.0 \qquad - $ $h_{fe} \qquad \text{Small-Signal Current Gain}$	V _{CE(sat)}		-	0.7	Vdc
f _T Current-Gain - Bandwidth Product (Note 3) (I _C = 200 mAdc, V _{CE} = 10 Vdc, f _{test} = 1.0 MHz) 3.0 - h _{fe} Small-Signal Current Gain	V _{BE(on)}		-	1.3	Vdc
$(I_C = 200 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1.0 \text{ MHz})$ 3.0 – h_{fe} Small–Signal Current Gain	YNAMIC CH	HARACTERISTICS		-	•
h _{fe} Small-Signal Current Gain	f _T		3.0	-	MHz
$(I_C = 0.2 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{fe}	Small–Signal Current Gain (I _C = 0.2 Adc, V _{CE} = 10 Vdc, f = 1.0 kHz)	20	-	_

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

3. $f_T = |h_{fe}| \bullet f_{test}$

TIP29, A, B, C (NPN), TIP30, A, B, C (PNP)

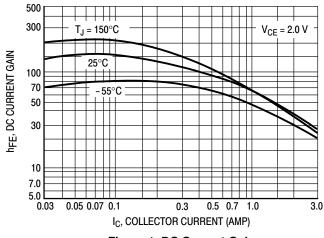


Figure 1. DC Current Gain

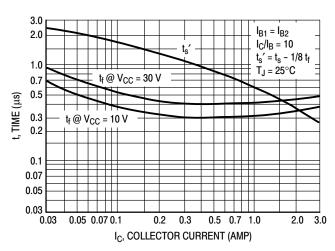


Figure 2. Turn-Off Time

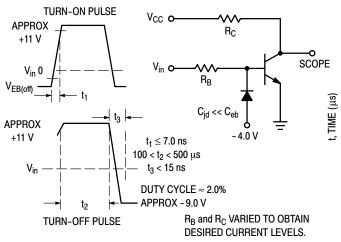


Figure 3. Switching Time Equivalent Circuit

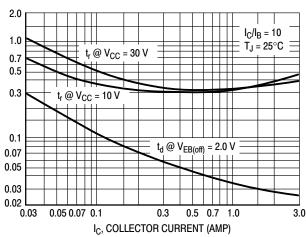


Figure 4. Turn-On Time

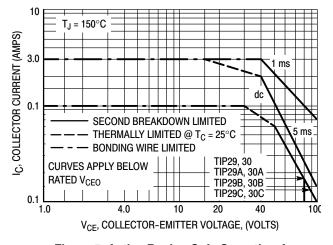
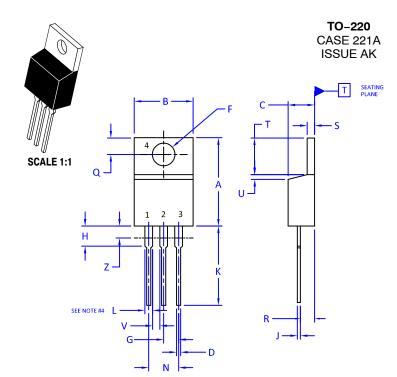


Figure 5. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.


The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

TIP29, A, B, C (NPN), TIP30, A, B, C (PNP)

ORDERING INFORMATION

Device	Package	Shipping
TIP29G	TO-220 (Pb-Free)	50 Units / Rail
TIP29AG	TO-220 (Pb-Free)	50 Units / Rail
TIP29BG	TO-220 (Pb-Free)	50 Units / Rail
TIP29CG	TO-220 (Pb-Free)	50 Units / Rail
TIP30G	TO-220 (Pb-Free)	50 Units / Rail
TIP30AG	TO-220 (Pb-Free)	50 Units / Rail
TIP30BG	TO-220 (Pb-Free)	50 Units / Rail
TIP30CG	TO-220 (Pb-Free)	50 Units / Rail

DATE 13 JAN 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 2: PIN 1. 2. 3. 4.	EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3. 4.	ANODE	2. 3.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE	2. 3.	ANODE CATHODE ANODE CATHODE	STYLE 7: PIN 1. 2. 3. 4.	ANODE	2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE
STYLE 9: PIN 1. 2. 3. 4.		STYLE 10: PIN 1. 2. 3. 4.	GATE	STYLE 11: PIN 1. 2. 3. 4.	DRAIN	STYLE 12: PIN 1. 2. 3. 4.	

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales