

MOSFET – Power, Single, P-Channel with ESD Protection, SOT-723

-20 V, -780 mA

NTK3139P

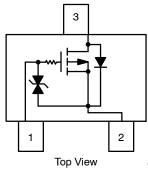
Features

- P-channel Switch with Low R_{DS(on)}
- 44% Smaller Footprint and 38% Thinner than SC-89
- Low Threshold Levels Allowing 1.5 V R_{DS(on)} Rating
- Operated at Low Logic Level Gate Drive
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Load/Power Switching
- Interfacing, Logic Switching
- Battery Management for Ultra Small Portable Electronics

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)


Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-20	V
Gate-to-Source Volt	age		V_{GS}	± 6	V
Continuous Drain	Steady State	T _A = 25°C	I _D	-780	mA
Current (Note 1)	State	T _A = 85°C		-570	
	t ≤ 5 s	T _A = 25°C		-870	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	450	mW
	t ≤ 5 s			550	
Continuous Drain Current (Note 2)	Steady State	T _A = 25°C	I _D	-660	mA
	State	T _A = 85°C		-480	
Power Dissipation (Note 2)		T _A = 25°C	P _D	310	mW
Pulsed Drain Cur- rent	t _p = 10 μs		I _{DM}	-1.2	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- 2. Surface mounted on FR4 board using the minimum recommended pad size

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max	
-20 V	0.38 Ω @ -4.5 V	–780 mA	
	0.52 Ω @ -2.5 V	-660 mA	
	0.70 Ω @ -1.8 V	–100 mA	
	0.95 Ω @ -1.5 V	-100 mA	

SOT-723 (3-LEAD)

- 1 Gate
- 2 Source
- 3 Drain

SOT-723 CASE 631AA STYLE 5

MARKING DIAGRAM

KD = Specific Device CodeM = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTK3139PT1G		4000 / Tape & Reel
NTK3139PT5G	SOT-723 Pb-Free	8000 / Tape & Reel
NTK3139PT3G		40000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NTK3139P

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	280	°C/W
Junction-to-Ambient - t = 5 s (Note 3)	$R_{ hetaJA}$	228	
Junction-to-Ambient - Steady State Minimum Pad (Note 4)	$R_{ hetaJA}$	400	

- 3. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
 4. Surface mounted on FR4 board using the minimum recommended pad size

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ specified)$

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					,,		<u> </u>
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = -250 μA		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA, Referen	ce to 25°C		-16.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1.0	
		$V_{DS} = -16V$	T _J = 125°C			-2.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = :	±4.5 V			±2.0	μΑ
ON CHARACTERISTICS (Note 5)	•					•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -$	250 μΑ	-0.45		-1.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.4		mV/°C
Drain-to-Source On Resistance		$V_{GS} = -4.5 \text{ V}, I_D = -4.5 \text{ V}$	-780 mA		0.38	0.48	
		$V_{GS} = -2.5 \text{ V}, I_D = -660 \text{ mA}$			0.52	0.67	Ω
	R _{DS(on)}	V _{GS} = -1.8 V, I _D = -100 mA			0.70	0.95	
		V _{GS} = -1.5 V, I _D = -100 mA			0.95	2.20	
Forward Transconductance	9FS	$V_{DS} = -10 \text{ V}, I_D = -540 \text{ mA}$			1.2		S
Gate Resistance	R_{G}	T _A = 25°C			112		Ω
CHARGES, CAPACITANCES AND (GATE RESISTAN	NCE				•	
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, } V_{DS} = -16 \text{ V}$			113	170	
Output Capacitance	Coss				15	25	pF
Reverse Transfer Capacitance	C _{RSS}				9.0	15	
SWITCHING CHARACTERISTICS, V	/ _{GS} = 4.5 V (Not	e 6)					
Turn On Delay Time	t _{d(ON)}				9.0		
Rise Time	t _r	V _{GS} = -4.5 V, V _{DS} =	= –10 V,		5.8		1
TurnOff Delay Time	t _{d(OFF)}	$I_D = -200 \text{ mA}, R_G = 10 \Omega$			32.7		ns
Fall Time	t _f				20.3		
DRAIN SOURCE DIODE CHARACT	ERISTICS						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = -350 \text{ mA}$	T _J = 25°C		-0.8	-1.2	V
Reverse Recovery Time	t _{RR}		•		13.2		ns
Charge Time	t _a	VGS = 0 V. disp/d+ = 1	100 A/μs.		11.8		1
Discharge Time	t _b	$V_{GS} = 0 \text{ V, } d_{ISD}/d_t = 0 \text{ I}_S = -1.0 \text{ A, } V_{DD} = 0 \text{ A}$	-20 V		1.4		1
Reverse Recovery Charge	Q_{RR}	1 1			5.0		nC

- 5. Pulse Test: pulse width = 300 μ s, duty cycle = 2% 6. Switching characteristics are independent of operating junction temperatures

NTK3139P

TYPICAL CHARACTERISTICS

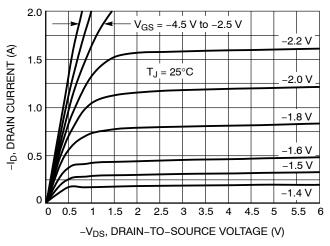


Figure 1. On-Region Characteristics

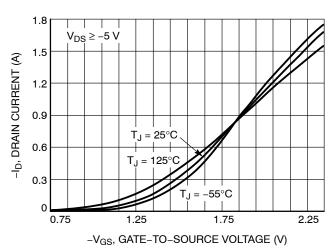


Figure 2. Transfer Characteristics

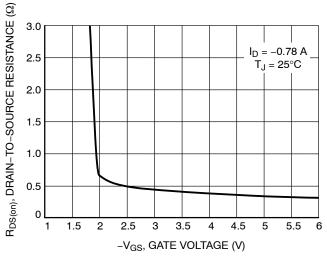


Figure 3. On-Resistance vs. Gate-to-Source Voltage

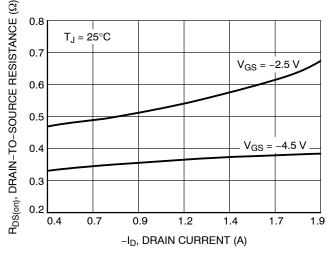


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

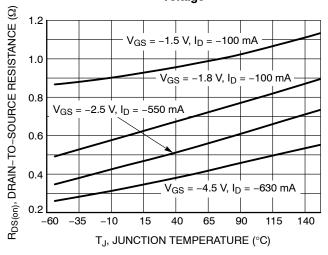


Figure 5. On–Resistance Variation with Temperature

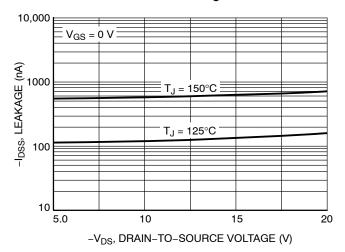
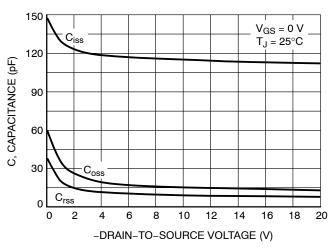



Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTK3139P

TYPICAL CHARACTERISTICS

 $\begin{array}{c} 100 \\ \hline V_{DD} = -10 \text{ V} \\ \hline I_D = -200 \text{ mA} \\ \hline V_{GS} = -4.5 \text{ V} \\ \hline t_{d(off)} \\ \hline t_{f} \\ \hline \end{array}$

Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

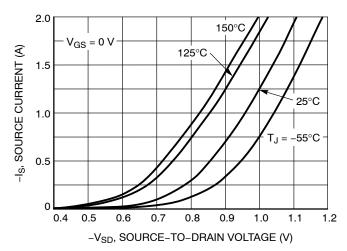
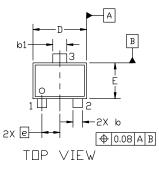
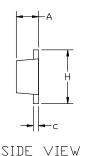
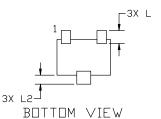


Figure 9. Diode Forward Voltage vs. Current

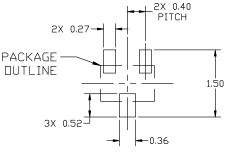
MILL IMETERS




SOT-723 1.20x0.80x0.50, 0.40P CASE 631AA ISSUE E


DATE 24 JAN 2024

NOTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. CONTROLLING DIMENSION: MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH, MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS				
DIM	MIN.	N□M.	MAX.		
А	0.45	0.50	0.55		
b	0.15	0.21	0.27		
b1	0.25	0.31	0.37		
С	0.07	0.12	0.17		
D	1.15	1.20	1.25		
E	0.75	0.80	0.85		
е	0.40 BSC				
Н	1.15	1.20	1.25		
L	0.29 REF				
L2	0.15	0.20	0.25		

RECOMMENDED MOUNTING FUUTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

XX = Specific Device Code = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
EMITTER	2. N/C	2. ANODE	CATHODE	SOURCE
COLLECTOR	CATHODE	CATHODE	ANODE	DRAIN

DESCRIPTION	SOT-723 1.20x0.80x0.50, 0.40P		PAGE 1 OF 1	
DOCUMENT NUMBER:	98AON12989D	Printed versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales