ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Quad 2-Input Multiplexer with 3-State Outputs

The LSTTL/MSI SN74LS257B and the SN74LS258B are Quad 2-Input Multiplexers with 3-state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable ($E_{\rm O}$) Input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all ON Semiconductor TTL families.

- Schottky Process For High Speed
- Multiplexer Expansion By Tying Outputs Together
- Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects
- Special Circuitry Ensures Glitch Free Multiplexing
- ESD > 3500 Volts

GUARANTEED OPERATING RANGES

Symbol	I Parameter		Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	ô
I _{OH}	Output Current - High			-2.6	mA
I _{OL}	Output Current – Low			24	mA

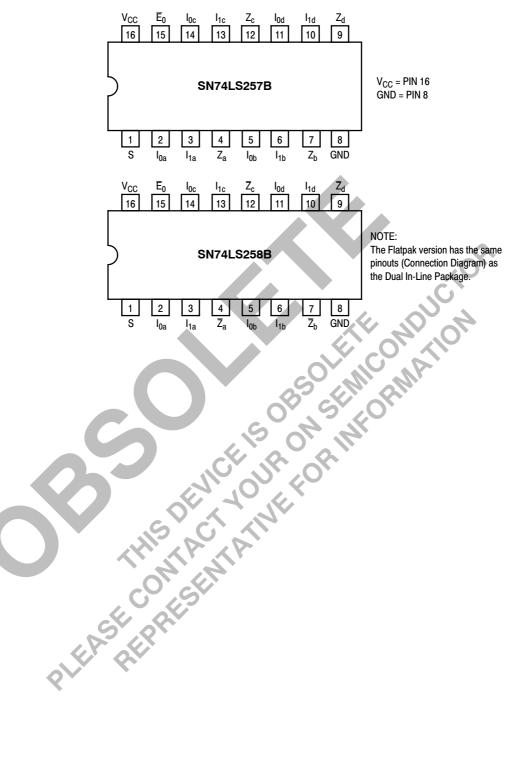
ON Semiconductor™

http://onsemi.com

LOW POWER SCHOTTKY

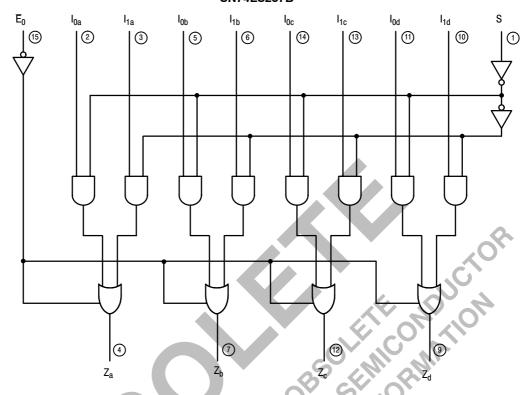
PLASTIC N SUFFIX CASE 648

SOIC D SUFFIX CASE 751B

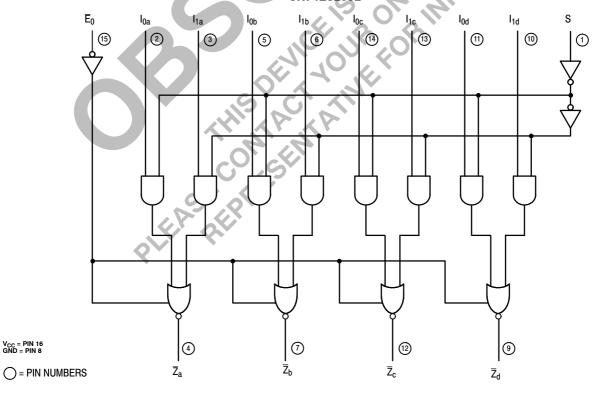

SOEIAJ M SUFFIX CASE 966

ORDERING INFORMATION

Device	Package	Shipping	
SN74LS257BN	16 Pin DIP	2000 Units/Box	
SN74LS257BD	SOIC-16	38 Units/Rail	
SN74LS257BDR2	SOIC-16	2500/Tape & Reel	
SN74LS257BM	SOEIAJ-16	See Note 1	
SN74LS257BMEL	SOEIAJ-16	See Note 1	
SN74LS258BN	16 Pin DIP	2000 Units/Box	
SN74LS258BD	SOIC-16	38 Units/Rail	
SN74LS258BDR2	SOIC-16	2500/Tape & Reel	
SN74LS258BM	SOEIAJ-16	See Note 1	
SN74LS258BMEL	SOEIAJ-16	See Note 1	


 For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

CONNECTION DIAGRAM DIP (TOP VIEW)



LOGIC DIAGRAMS

SN74LS257B

SN74LS258B

FUNCTIONAL DESCRIPTION

The LS257B and LS258B are Quad 2-Input Multiplexers with 3-state outputs. They select four bits of data from two sources each under control of a Common Data Select Input. When the Select Input is LOW, the I₀ inputs are selected and when Select is HIGH, the I₁ inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form for the LS257B and in the inverted form for the LS258B.

The LS257B and LS258B are the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The logic equations for the outputs are shown below:

LS257B

$$\begin{array}{l} Z_a = \overline{E}_0 \bullet (I_{1a} \bullet S + I_{0a} \bullet \overline{S}) \ Z_b = \overline{E}_0 \bullet (I_{1b} \bullet S + I_{0b} \bullet \overline{S}) \\ \overline{Z}_c = \overline{E}_0 \bullet (I_{1c} \bullet S + I_{0c} \bullet \overline{S}) \ \overline{Z}_d = \overline{E}_0 \bullet (I_{1d} \bullet S + I_{0d} \bullet \overline{S}) \end{array}$$

When the Output Enable Input (\overline{E}_0) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

LS258B

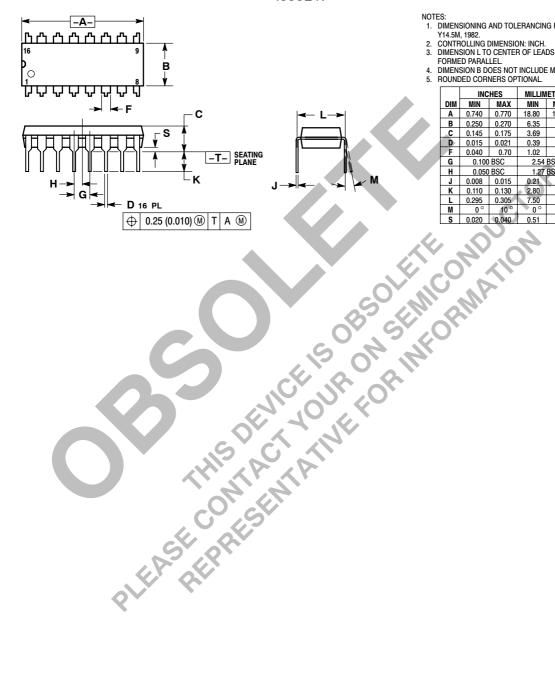
$$\begin{array}{l} \overline{Z}_a = \overline{E}_0 \bullet (I_{1a} \bullet S + I_{0a} \bullet \overline{S}) \ \overline{Z}_b = \overline{E}_0 \bullet (I_{1b} \bullet S + I_{0b} \bullet \overline{S}) \\ \overline{Z}_c = \overline{E}_0 \bullet (I_{1c} \bullet S + I_{0c} \bullet \overline{S}) \ \overline{Z}_d = \overline{E}_0 \bullet (I_{1d} \bullet S + I_{0d} \bullet \overline{S}) \end{array}$$

TRUTH TABLE

-(1 – <u>–</u> 0 (110	T)	RUTH TABL		o i ige	
	OUTPUT ENABLE	SELECT INPUT	DATA INPUTS	OUTPUTS LS257B	OUTPUTS LS258B	NO OF
	Ēo	S	l ₀ l ₁	Z	Z	
	Н	X	ХХ	(Z)	(Z)	
	L	Н	X L		H	
	L	Н	х н	C H	LO)	
	L	L	L X		H	
	L	T	H X	Н		

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test (Conditions
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA	
V _{OH}	Output HIGH Voltage	2.4	3.1		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table	
.,	O to 11 OWY/eller		0.25	0.4	V		V _{CC} = V _{CC} MIN,
V _{OL}	Output LOW Voltage		0.35	0.5	V		V _{IN} = V _{IL} or V _{IH} per Truth Table
I _{OZH}	Output Off Current — HIGH			20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V	
l _{OZL}	Output Off Current — LOW			-20	μА	V _{CC} = MAX, V _{OUT} = 0.4 V	
I _{IH}	Input HIGH Current Other Inputs S Inputs			20 40	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
	Other Inputs S Inputs			0.1 0.2	mA	V _{CC} = MAX, V _{IN} =	7.0 V
I _{IL}	Input LOW Current All Inputs			-0.4	mA	V _{CC} = MAX, V _{IN} =	0.4 V
I _{OS}	Short Circuit Current (Note 2)	-30		-130	mA	$V_{CC} = MAX$	
	Power Supply Current Total, Output HIGH LS257B LS258B			10 9.0	mA	CORI	
I _{CC}	Total, Output LOW LS257B LS258B			16 14	mA	V _{CC} = MAX	
	Total, Output 3-State LS257B LS258B			19 16	mA		

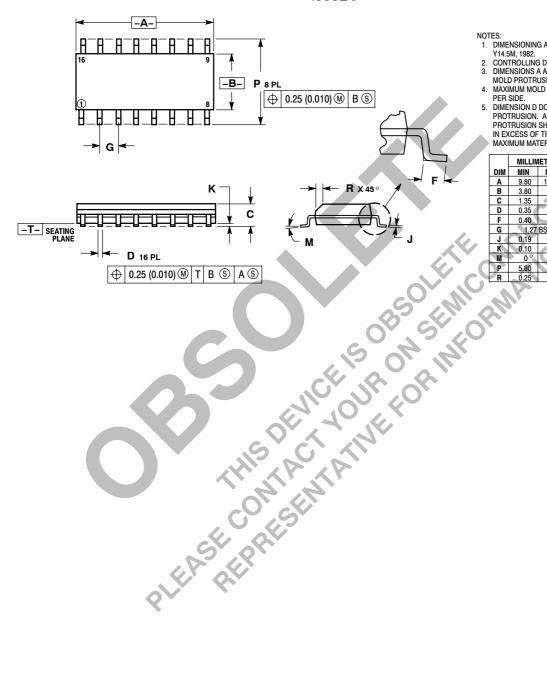

^{2.} Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0$ V) See SN74LS251 for Waveforms

			Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test (Conditions
t _{PLH} t _{PHL}	Propagation Delay, Data to Output	5	10 12	13 15	ns	Figures 1 & 2	C 45 pE
t _{PLH} t _{PHL}	Propagation Delay, Select to Output		14 14	21 21	ns	Figures 1 & 2	C _L = 45 pF
t _{PZH}	Output Enable Time to HIGH Level		20	25	ns	Figures 4 & 5	C _L = 45 pF
t _{PZL}	Output Enable Time to LOW Level		20	25	ns	Figures 3 & 5	$R_L = 667 \Omega$
t _{PLZ}	Output Disable Time to LOW Level		16	25	ns	Figures 3 & 5	C _L = 5.0 pF
t _{PHZ}	Output Disable Time from HIGH Level		18	25	ns	Figures 4 & 5	$R_L = 667 \Omega$

PACKAGE DIMENSIONS

N SUFFIX PLASTIC PACKAGE CASE 648-08 ISSUE R


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

		INC	HES	MILLIMETERS			
	DIM	MIN	MAX	MIN	MAX		
	Α	0.740	0.770	18.80	19.55		
	В	0.250	0.270	6.35	6.85		
	Ç	0.145	0.175	3.69	4.44		
d	Ď	0.015	0.021	0.39	0.53		
ı	F	0.040	0.70	1.02	1.77		
4	G	0.100	BSC	2.54 BSC			
	Н	0.050	BSC	1.27	BSC		
	J	0.008	0.015	0.21	0.38		
	K	0.110	0.130	2.80	3.30		
	L	0.295	0.305	7.50	7.74		
	M	0°	10°	0 °	10 °		
	0	0.020	0.040	0.51	1 01		

PACKAGE DIMENSIONS

D SUFFIX PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

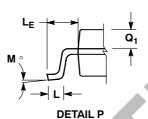
- Y 14.5M, 1982.

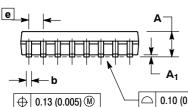
 CONTROLLING DIMENSION: MILLIMETER.

 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION. SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.


	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC _	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019


PACKAGE DIMENSIONS

M SUFFIX

SOEIAJ PACKAGE CASE 966-01 **ISSUE O**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD 3. FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE, MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
- TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INC	INCHES		
DIM	MIN	MAX	MIN	MAX		
Α	-	2.05		0.081		
Α1	0.05	0.20	0.002	0.008		
b	0.35	0.50	0.014	0.020		
C	0.18	0.27	0.007	0.011		
D	9.90	10.50	0.390	0.413		
E	5.10	5.45	0.201	0.215		
e	1.27	BSC	0.050 BSC			
Η _E	7.40	8.20	0.291	0.323		
L	0.50	0.85	0.020	0.033		
LE	1.10	1.50	0.043	0.059		
M	0 °	10°	0°	10 °		
Q_1	0.70	0.90	0.028	0.035		
Z		0.78		0.031		

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative