MOSFET - Power, Dual, **N-Channel, Power Trench, Power Clip, Asymmetric**

30 V / 25 V

Features

- Small Footprint (5x6mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- Designed with Low Rg for Fast Switching Applications
- These are Pb-free, Halogen Free / BFR Free and are RoHS Compliant

Typical Applications

- DC-DC Converters
- System Voltage Rails
- General Purpose Point of Load

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

			C			
Parameter			Sym- bol	Q1	Q2	Unit
Drain-to-Source Voltage			V_{DSS}	30	25	V
Gate-to-Source Voltage			V _{GS}	+16V -12V	+16V -12V	V
Continuous Drain Cur-	Steady	T _C = 25°C	I _D	77	180	Α
rent R _{θJC} (Note 3)	State	T _C = 85°C		56	130	
Power Dissipation $R_{\theta JC}$ (Note 3)		T _A = 25°C	P _D	29.2	37.4	W
Continuous Drain Cur-	Steady	T _A = 25°C	I _D	21	44	Α
rent R _{θJA} (Note 1, 3)	State	T _A = 85°C		15	32	
Power Dissipation $R_{\theta JA}$ (Note 1, 3)		T _A = 25°C	P _D	2.1	2.3	W
Continuous Drain Cur-	Steady	T _A = 25°C	I _D	14	30	Α
rent R _{θJA} (Note 2, 3)	State	T _A = 85°C		10	21	
Power Dissipation R _{θJA} (Note 2, 3)		T _A = 25°C	P _D	0.96	1.04	W
Pulsed Drain Current	$T_A = 25^{\circ}C$	C, t _p = 10 μs	I _{DM}	356	1023	Α
Single Pulse Drain-to-Source Avalanche Energy Q1: I _L = 10 A _{pk} , L = 3 mH (Note 4) Q2: I _L = 20 A _{pk} , L = 3 mH (Note 4)			E _{AS}	150	600	mJ
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 t	o 150	°C
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	20	60	°C

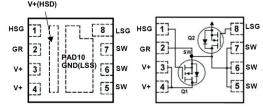
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

FET	V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
01	3.0 mΩ @ 10 V		77 A
Q1 30 V	30 V	3.8 mΩ @ 4.5 V	// A
Q2	25 V	0.72 mΩ @ 10 V	180 A
ر برک	25 V	0.95 mΩ @ 4.5 V	100 A

PQFN8 POWER CLIP CASE 483AR


MARKING DIAGRAM

&Z&3&K 2EGN 0

&Z = Assembly Plant Code &3 = Numeric Date Code &K = Lot Code

= Specific Device Code

ELECTRICAL CONNECTION

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFD0D9N02P1E	PQFN8 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. THERMAL RESISTANCE RATINGS

Parameter	Symbol	Q1 Max	Q2 Max	Units
Junction-to-Case - Steady State (Note 1, 3)	$R_{\theta JC}$	4.3	3.3	°C/W
Junction-to-Ambient - Steady State (Note 1, 3)	$R_{\theta JA}$	60	55	
Junction-to-Ambient - Steady State (Note 2, 3)	$R_{\theta JA}$	130	120	

- 1. Surface-mounted on FR4 board using 1 in² pad size, 2 oz Cu pad.
- 2. Surface-mounted on FR4 board using minimum pad size, 2 oz Cu pad.
- 3. The entire application environment impacts the thermal resistance values shown. They are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro-mechanical application board design. RQCA is determined
- by the user's board design.

 4. Q1 100% UIS tested at L = 0.1 mH, I_{AS} = 21 A. Q2 100% UIS tested at L = 0.1 mH, I_{AS} = 45 A.

Parameter	Symbol	Test Condition	FET	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	1	I	1			1	1	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	Q1	30			V	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	Q2	25			V	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS} /	I _D = 1 mA, ref to 25°C	Q1		18		mV/°C	
Temperature Coefficient	TJ	I _D = 1 mA, ref to 25°C	Q2		16		1	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V T _J = 25°C	Q1			10	μΑ	
		V _{GS} = 0 V, V _{DS} = 20 V	Q2			10	1	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = +16 V / -12 V	Q1			±100	nA	
		V _{DS} = 0 V, V _{GS} = +16 V / -12 V	Q2			±100	1	
ON CHARACTERISTICS (Note 5)	•							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 340 \mu A$	Q1 1.2 1.6		2.0	V		
		$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	Q2	1.2	1.5	2.0	2.0	
Threshold Temperature Coefficient	V _{GS(TH)}	I _D = 340 μA, ref to 25°C	Q1		-4.4		mV/°C	
	/ T _J	I _D = 1 mA, ref to 25°C	Q2		-5.1			
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A	Q1		2.5	3.0	mΩ	
		V _{GS} = 4.5 V, I _D = 18 A	1	(3.0	3.8		
		V _{GS} = 10 V, I _D = 41 A	Q2 0.60 0.75	0.60	0.72			
		V _{GS} = 4.5 V, I _D = 37 A			0.75	0.95	1	
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 20 A	Q1		147			
		V _{DS} = 5 V, I _D = 41 A	Q2		311			
Gate Resistance	R _G	T _A = 25°C	Q1		0.4		Ω	
			Q2		0.4			
CHARGES & CAPACITANCES								
Input Capacitance	C _{ISS}	Q1: V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz	Q1		1400		pF	
		Q2: $V_{GS} = 0 \text{ V}$, $V_{DS} = 13 \text{ V}$, $f = 1 \text{ MHz}$	Q2		5050		1	
Output Capacitance	C _{OSS}		Q1		421		pF	
			Q2		1355			
Reverse Capacitance	C _{RSS}		Q1		22		pF	
			Q2		94		1	

- 5. Pulse Test: pulse width $\leq 300~\mu s,~duty~cycle \leq 2\%$
- 6. Switching characteristics are independent of operating junction temperatures

Table 2. ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter	Symbol	Test Condition		FET	Min	Тур	Max	Unit
CHARGES & CAPACITANCES	•							
Total Gate Charge	Q _{G(TOT)}	Q1: $V_{GS} = 4.5V$, $V_{DS} = 15V$, $I_{D} = 20 \text{ A}$ Q2: $V_{GS} = 4.5V$, $V_{DS} = 13V$,		Q1		9		nC
				Q2		30		
Gate-to-Drain Charge	Q_{GD}	I _D = 41 A	$I_D = 41 \text{ A}$			2		nC
				Q2		6		
Gate-to-Source Charge	Q _{GS}			Q1		4		nC
				Q2		13		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V, I _D = 20 A		Q1		19		nC
		V _{GS} = 10 V, V _{DS} = 13	3 V, I _D = 41 A	Q2		67		
SWITCHING CHARACTERISTICS	, VGS = 4.5 V (No	ote 6)						
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}$ Q1: $I_D = 20 \text{ A}$, $V_{DD} = 15 \text{ V}$, $R_G = 6\Omega$		Q1		8		ns
				Q2		15		
Rise Time	t _{r(ON)}	Q2: $I_D = 41 \text{ A}, V_{DD} = 13 \text{ V}, R_G = 6\Omega$		Q1		2		ns
				Q2		4		
Turn-Off Delay Time	t _{d(OFF)}	1				25		ns
				Q2		70		
Fall Time	t _f	1		Q1		3		ns
				Q2		10		1
SOURCE-TO-DRAIN DIODE CH	ARACTERISTICS							
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 20 \text{ A}$	T _J = 25°C	Q1		8.0	1.2	V
			T _J = 125°C	1		0.68		1
		V _{GS} = 0 V, I _S = 41 A T _J = 25°C		Q2		0.8	1.2	1
			T _J = 125°C	1		0.64		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 \		Q1		26		ns
		Q1: $I_S = 20 \text{ A}$, $dI/dt = 100 \text{ A/}\mu\text{s}$		Q2		48		1
Reverse Recovery Charge	Q _{RR}	Q2: I _S = 41 A, dl/dt = 300 A/μs		Q1		14		nC
				Q2		79		1

^{5.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% 6. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS (Q1 N-Channel) T_J = 25°C unless otherwise noted.



Figure 5. On-Resistance Variation with **Temperature**

T_J, JUNCTION TEMPERATURE (°C)

50

75

100

125

150

0.5 -50

-25

0

25

Figure 6. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

17

 $T_{.J} = 25^{\circ}C$

13

10

5

TYPICAL CHARACTERISTICS (Q1 N-Channel) T_J = 25°C unless otherwise noted.

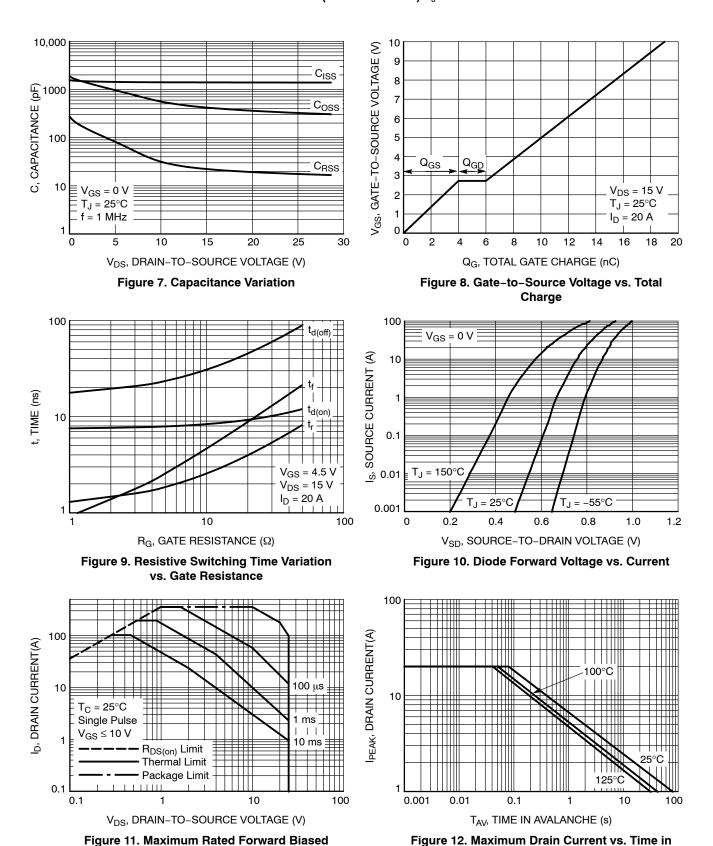


Figure 12. Maximum Drain Current vs. Time in Avalanche

Safe Operating Area

TYPICAL CHARACTERISTICS (Q1 N-Channel) $T_J = 25^{\circ}C$ unless otherwise noted.

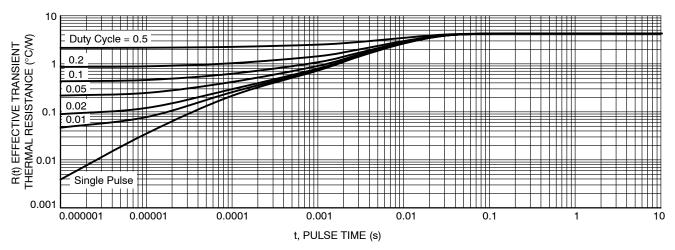


Figure 13. Thermal Response

TYPICAL CHARACTERISTICS (Q2 N-Channel) T_J = 25°C unless otherwise noted.

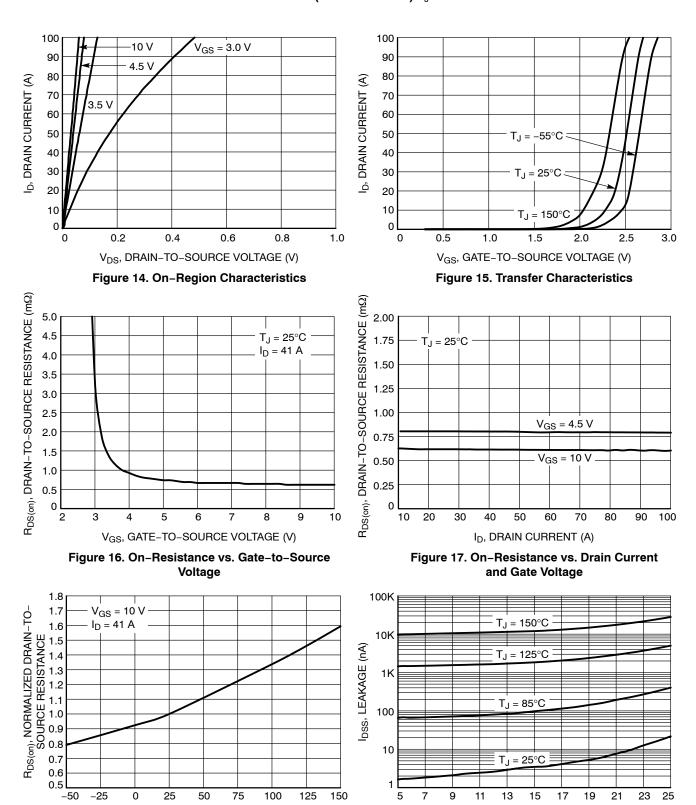


Figure 18. On-Resistance Variation with Temperature

T_J, JUNCTION TEMPERATURE (°C)

Figure 19. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS (Q2 N-Channel) T_J = 25°C unless otherwise noted.

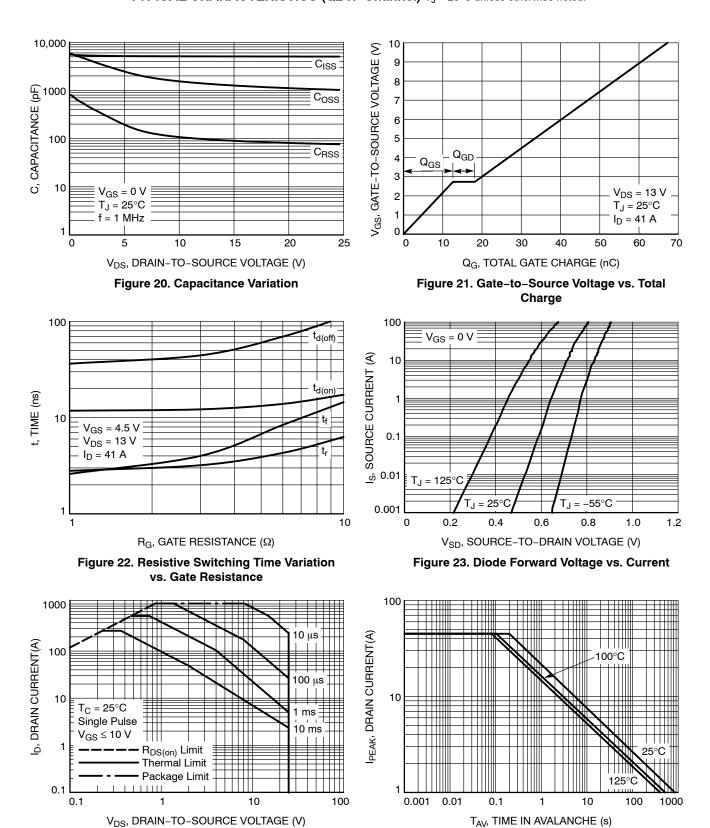
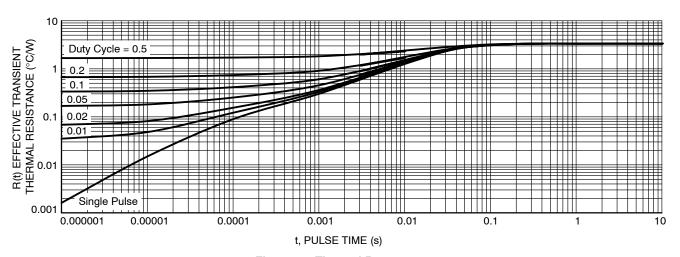


Figure 24. Maximum Rated Forward Biased Figure 25. Maximum Drain Current vs. Time in **Avalanche**

Safe Operating Area

TYPICAL CHARACTERISTICS (Q2 N-Channel) $T_J = 25^{\circ}C$ unless otherwise noted.



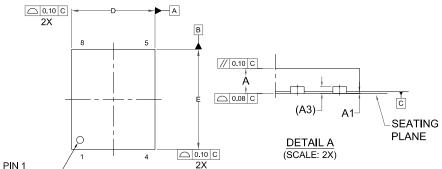
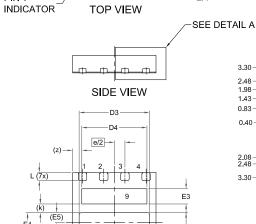


Figure 26. Thermal Response

PQFN8 5.00x6.00x0.75, 1.27P CASE 483AR ISSUE C

DATE 18 OCT 2023



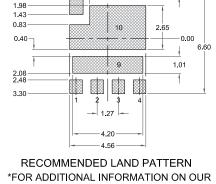
A) DOES NOT FULLY CONFORM TO JEDEC REGISTRATION, MO-229, DATED 11/2001.

NOTES: UNLESS OTHERWISE SPECIFIED

- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.
- D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

DIM	MILLIMETERS					
Diw	MIN.	NOM.	MAX.			
Α	0.70	0.75	0.80			
A1	0.00 -		0.05			
A3	C	.20 REF				
b	(.51 BSC				
D	4.90	5.00	5.10			
D2	3.05	3.15	3.25			
D3	4.12	4.22	4.32			
D4	3.80	3.90	4.00			
Е	5.90	6.00	6.10			
E2	2.36	2.46	2.56			
E3	0.81	0.91	1.01			
E4	1.27 1.37 1.47					
E5	(0.59 REF				
е	1	.27 BSC				
e/2	().635 BS	С			
e1	3	3.81 BSC	;			
k	().52 REF	•			
L	0.38	0.48	0.58			
L4	1.47	1.57	1.67			
Z	0.55 REF					
z1	0.39 REF					

10


e1

BOTTOM VIEW

b

(8X)

0.10(M) C A B 0.05(M) C

2.29 1.53 1.08 0.00

0.82

53

RECOMMENDED LAND PATTERN
*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING
DETAILS, PLEASE DOWNLOAD THE ON
SEMICONDUCTOR SOLDERING AND
MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13666G	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5.00x6.00x0.75. 1.2	7P	PAGE 1 OF 1	

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales