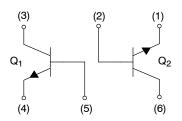


Dual General Purpose Transistor NST3904DXV6T1G, NSVT3904DXV6T1G, NST3904DXV6T5G

The NST/NSV3904DXV6 device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-563 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.


Features

- h_{FE}, 100-300
- Low $V_{CE(sat)}$, $\leq 0.4 \text{ V}$
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- AEC-Q101 Qualified and PPAP Capable NSVT3904DXV6T1G
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector - Emitter Voltage		V_{CEO}	40	Vdc
Collector - Base Voltage		V _{CBO}	60	Vdc
Emitter - Base Voltage		V _{EBO}	6.0	Vdc
Collector Current - Continuous		I _C	200	mAdc
Electrostatic Discharge	HBM MM	ESD	>16000 >2000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

NST/NSV3904DXV6

MARKING DIAGRAM

SOT-563 CASE 463A STYLE 1

MA = Device Code
M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

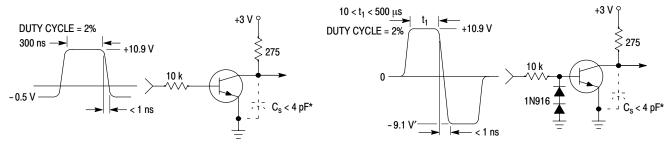
Device	Package	Shipping [†]
NST3904DXV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel
NSVT3904DXV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel
NST3904DXV6T5G	SOT-563 (Pb-Free)	8000/Tape & Reel
SNST3904DXV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel
SNST3904DXV6T5G	SOT-563 (Pb-Free)	8000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C Derate above 25°C (Note 1)	P _D	357 2.9	mW mW/°C
Thermal Resistance Junction-to-Ambient (Note 1)	$R_{ heta JA}$	350	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C Derate above 25°C (Note 1)	P _D	500 4.0	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{ heta JA}$	250	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C


^{1.} FR-4 @ Minimum Pad

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Ch	naracteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS		1	II.	•	
Collector - Emitter Breakdown Voltage ((Note 2) (I _C = 1.0 mAdc, I _B = 0)	V _{(BR)CEO}	40	-	Vdc
Collector - Base Breakdown Voltage (I _C	= 10 μAdc, I _E = 0)	V _{(BR)CBO}	60	-	Vdc
Emitter – Base Breakdown Voltage (I _E =	10 μAdc, I _C = 0)	V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EI}	B = 3.0 Vdc)	I _{BL}	_	50	nAdc
Collector Cutoff Current (V _{CE} = 30 Vdc,	V _{EB} = 3.0 Vdc)	I _{CEX}	_	50	nAdc
ON CHARACTERISTICS (Note 2)					
$\begin{array}{l} DC \ Current \ Gain \\ (I_C = 0.1 \ mAdc, \ V_{CE} = 1.0 \ Vdc) \\ (I_C = 1.0 \ mAdc, \ V_{CE} = 1.0 \ Vdc) \\ (I_C = 10 \ mAdc, \ V_{CE} = 1.0 \ Vdc) \\ (I_C = 50 \ mAdc, \ V_{CE} = 1.0 \ Vdc) \\ (I_C = 100 \ mAdc, \ V_{CE} = 1.0 \ Vdc) \end{array}$		h _{FE}	40 70 100 60 30	- 300 - -	_
		V _{CE(sat)}	_ _	0.2 0.3	Vdc
$\begin{aligned} &\text{Base-Emitter Saturation Voltage} \\ &\text{(I}_{\text{C}} = 10 \text{ mAdc, I}_{\text{B}} = 1.0 \text{ mAdc)} \\ &\text{(I}_{\text{C}} = 50 \text{ mAdc, I}_{\text{B}} = 5.0 \text{ mAdc)} \end{aligned}$		V _{BE(sat)}	0.65 -	0.85 0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS	3		_		_
Current - Gain - Bandwidth Product (I _C	= 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f _T	300	-	MHz
Output Capacitance (V_{CB} = 5.0 Vdc, I_{E}	= 0, f = 1.0 MHz)	C _{obo}	-	4.0	pF
Input Capacitance (V_{EB} = 0.5 Vdc, I_{C} =	0, f = 1.0 MHz)	C _{ibo}	_	8.0	pF
Input Impedance ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 1.$	h _{ie}	1.0 2.0	10 12	kΩ	
Voltage Feedback Ratio (V _{CE} = 10 Vdc,	h _{re}	0.5 0.1	8.0 10	X 10 ⁻⁴	
Small – Signal Current Gain (V _{CE} = 10 \	h _{fe}	100 100	400 400	_	
Output Admittance ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 1.0 \text{ mAdc}$, $f = 1.0 \text{ kHz}$)		h _{oe}	1.0 3.0	40 60	μmhos
Noise Figure (V _{CE} = 5.0 Vdc, I _C = 100 μ Adc, R _S = 1.0 k Ω , f = 1.0 kHz)		NF		5.0 4.0	dB
SWITCHING CHARACTERISTICS		•	II.		
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = -0.5 Vdc)	t _d	_	35	
Rise Time	(I _C = 10 mAdc, I _{B1} = 1.0 mAdc)	t _r	-	35	ns
Storage Time	(V _{CC} = 3.0 Vdc, I _C = 10 mAdc)	t _s	_	200	
			+	!	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

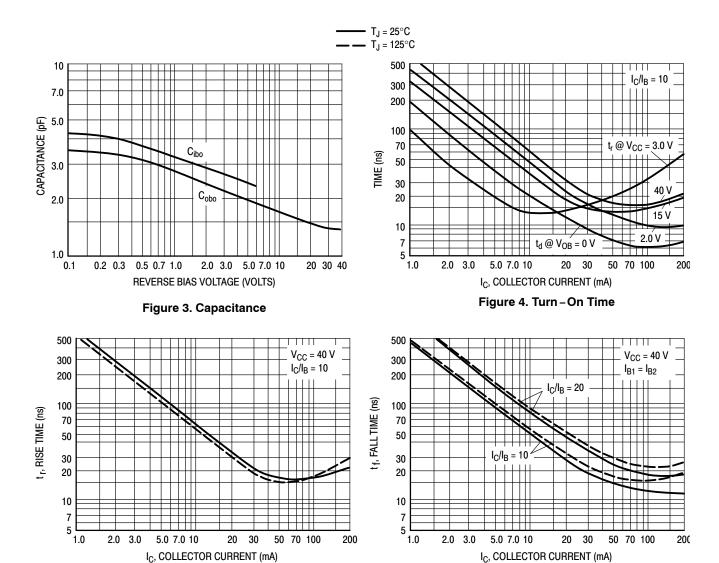
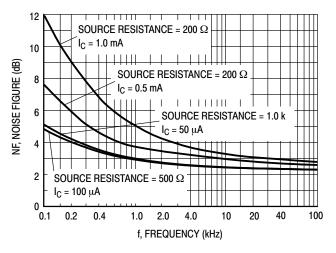



Figure 5. Rise Time

Figure 6. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

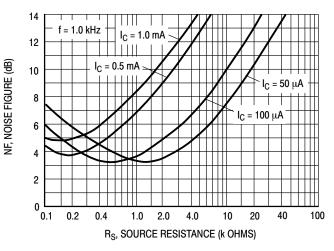
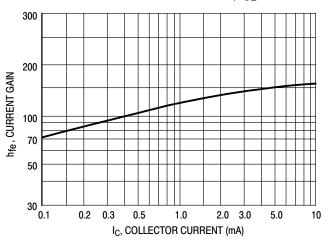



Figure 7. Noise Figure

Figure 8. Noise Figure

h PARAMETERS

 $(V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$



Figure 9. Current Gain

Figure 10. Output Admittance

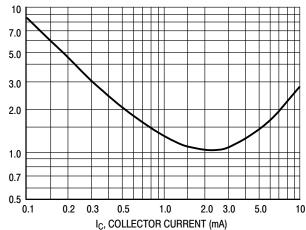


Figure 11. Input Impedance

Figure 12. Voltage Feedback Ratio

, VOLTAGE FEEDBACK RATIO (x 10 -4)

TYPICAL STATIC CHARACTERISTICS

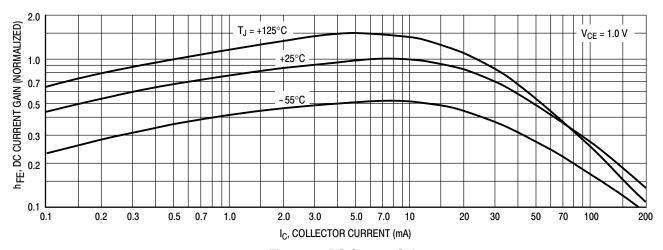


Figure 13. DC Current Gain

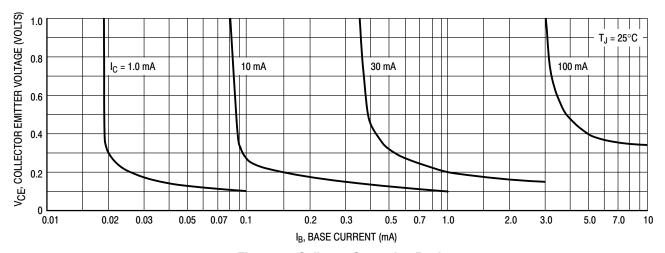


Figure 14. Collector Saturation Region

TYPICAL STATIC CHARACTERISTICS

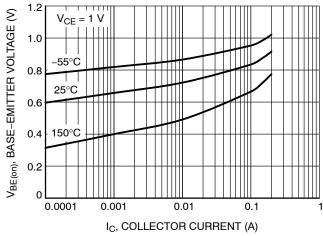


Figure 15. Base Emitter Voltage vs. Collector Current

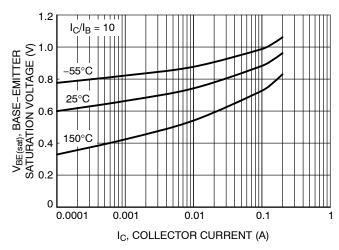


Figure 16. Base Emitter Saturation Voltage vs.
Collector Current

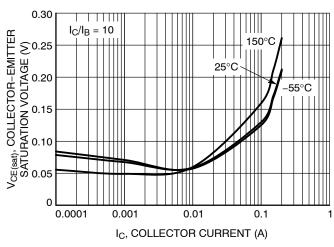


Figure 17. Collector Emitter Saturation Voltage vs. Collector Current

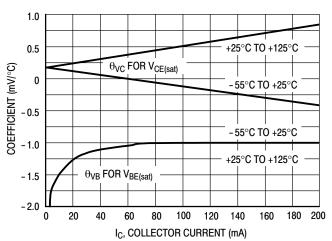
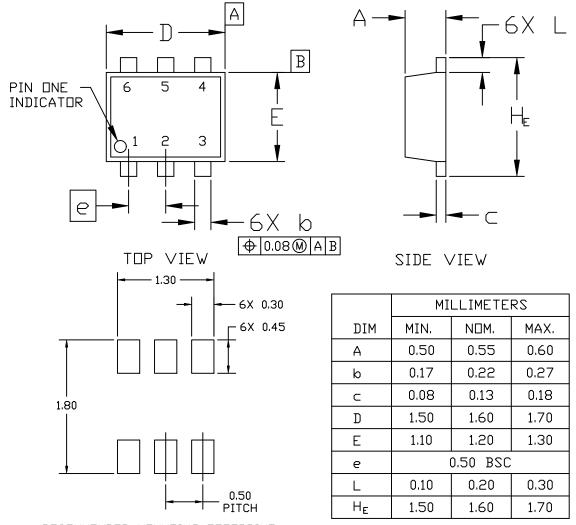


Figure 18. Temperature Coefficients

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS



SOT-563, 6 LEAD CASE 463A ISSUE H

DATE 26 JAN 2021

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

RECOMMENDED MOUNTING FOOTPRINT*

For additional information on our Pb-Free strategy and soldering details, please download the IIN Semiconductor Soldering and Mounting Techniques Reference Manual, SILDERRM/D.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 1 OF 2	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-563, 6 LEAD

CASE 463A ISSUE H

2

1

DATE 26 JAN 2021

STYLE 1: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1	STYLE 2: PIN 1. EMITTER 1 2. EMITTER 2 3. BASE 2 4. COLLECTOR 2 5. BASE 1 6. COLLECTOR 1	STYLE 3: PIN 1. CATHODE 1 2. CATHODE 1 3. ANODE/ANODE 4. CATHODE 2 5. CATHODE 2 6. ANODE/ANODE
STYLE 4: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 5: PIN 1. CATHODE 2. CATHODE 3. ANODE 4. ANODE 5. CATHODE 6. CATHODE	STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 7: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE	STYLE 8: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SUURCE 5. DRAIN 6. DRAIN	STYLE 9: PIN 1. SDURCE 1 2. GATE 1 3. DRAIN 2 4. SDURCE 2 5. GATE 2 6. DRAIN 1
STYLE 10: PIN 1. CATHODE 1 2. N/C 3. CATHODE 2 4. ANODE 2 5. N/C 6. ANODE 1	STYLE 11: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	

GENERIC MARKING DIAGRAM*

XX = Specific Device CodeM = Month Code= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 2 OF 2	

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales