Low-Voltage SPDT Analog Switch or 2:1 Multiplexer/ De-multiplexer Bus Switch

NC7SBU3157, FSAU3157

General Description

The NC7SBU3157 / FSAU3157 is a high-performance, single-pole / double-throw (SPDT) analog switch or 2:1 multiplexer / de-multiplexer bus switch.

The device is fabricated with advanced sub-micron CMOS technology to achieve high-speed enable and disable times and low on resistance. The break-beforemake select circuitry prevents disruption of signals on the B port due to both switches temporarily being enabled during select pin switching. The device is specified to operate over the 1.65 to 5.5 V V_{CC} operating range. The control input tolerates voltages up to 5.5V, independent of the V_{CC} operating range.

ON Semiconductor integrated Undershoot Hardened Circuit senses undershoot at the I/Os, and responds by preventing voltage differentials from developing and turning the switch on.

Features

- Analog and Digital Applications
- Space-saving, SC70 6-lead, Surface-mount Package
- Low On Resistance: <10 Ω on typical at 3.3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Rail-to-rail Signal Handling
- Power-down, High-impedance Control Input
- Over-voltage Tolerance of Control Input to 7.0 V
- Break–before–make Enable Circuitry
- 250 MHz, 3 dB Bandwidth
- This Device is Pb-Free and is RoHS Compliant

FUNCTION TABLE

Input (S)	Function
Logic Level Low	B ₀ Connected to A
Logic Level High	B ₁ Connected to A

PIN DESCRIPTIONS

Pin Names	Description
A, B ₀ , B ₁	Data Ports
S	Control Input

ON Semiconductor®

www.onsemi.com

SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD

CONNECTION DIAGRAM

Pin Assignment SC-70

MARKING DIAGRAM

NOTE:

Orientation of top mark determines pin one location. Read the top mark left to right and pin one is the lower left pin.

Pin One Orientation

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Figure 1. Logic Symbol

Figure 2. Analog Symbol

ORDERING INFORMATION

Part Number	umber Top Mark Operating Temperature Rang		Part Number Top Mark Operating Temperature Range Package		Package	Shipping [†]
NC7SBU3157P6X	U7A	–40 to 85°C	SC70 (Pb-Free)	3000 units / Tape & Reel		
FSAU3157P6X	U7A	–40 to 85°C	SC70 (Pb-Free)	3000 units / Tape & Reel		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	-0.5	+7.0	V
VS	DC Switch Voltage (Note 1)	-0.5	V _{CC} + 0.5	V
V _{IN}	DC Input Voltage (Note 1)	-0.5	+7.0	V
Ι _{ΙΚ}	DC Input Diode Current at V _{IN} < 0 V		-50	mA
I _{OUT}	DC Output Current		128	mA
I _{CC} /I _{GND}	DC V _{CC} or Ground Current		±100	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
TJ	Junction Temperature Under Bias		+150	°C
TL	Junction Lead Temperature (Soldering, 10 seconds)		+260	°C
PD	Power Dissipation at +85°C		180	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol		Min	Max	Units	
V _{CC}	Supply Voltage Operating		1.65	5.50	V
V _{IN}	Control Input Voltage (Note 2)		0	V _{CC}	V
V _{IN}	Switch Input Voltage (Note 2)		0	V _{CC}	V
V _{OUT}	Output Voltage (Note 2)			V _{CC}	V
T _A	Operating Temperature			+85	°C
	Input Disc and Fall Time	Control Input $V_{CC} = 2.3 \text{ V} - 3.6 \text{ V}$	0	10	ns/V
۲, ۱f	Input Rise and Fail Time	Control Input $V_{CC} = 4.5 \text{ V} - 5.5 \text{ V}$	0	5	ns/V
θ _{JA}	Thermal Resistance			350	°C/W

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

2. Control input must be held HIGH or LOW; it must not float.

DC ELECTRICAL CHARACTERISTICS

				T _A = +25°C		$T_A = -40^{\circ}$	C to +85°C		
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Min.	Max.	Units
Ин	High Level Input Voltage		1.65 to 1.95	$0.75 V_{CC}$			$0.75 V_{CC}$		V
•	riigh zovor input voltage		2.3 to 5.5	$0.7 V_{CC}$			$0.7 V_{CC}$		v
VII	Low Level Input Voltage		1.65 to 1.95			$0.25 \ V_{CC}$		$0.25 V_{CC}$	V
VIL	Low Love input vehage		2.3 to 5.5			$0.3 V_{CC}$		$0.3 V_{CC}$	v
lin	Input Leakage Current	$0 \leq V_{IN} \leq 5.5V$	0 to 5.5		±0.05	±0.1		±1	μΑ
IOFF	Off State Leakage Current	$0 \le A, B \le V_{CC}$	1.65 to 5.5		±0.05	±0.1		±1	μA
Ron	Switch On Resistance	V _{IN} =0V, I _O =30mA	4.5		3.0	15.0		15.0	Ω
	(1010-0)	V _{IN} =2.4V, I _O =-30mA			5.0	15.0		15.0	
		V _{IN} =4.5V, I _O =-30mA			7.0	15.0		15.0	
		V _{IN} =0V, I _O =24mA	3.0		4.0	20.0		20.0	
		V _{IN} =3V, I _O =-24mA			10.0	20.0		20.0	
		V _{IN} =0V, I _O =8mA	2.3		5.0	30.0		30.0	
		V _{IN} =2.3V, I _O =-8mA			13.0	30.0		30.0	
		V _{IN} =0V, I _O =4mA	1.65		6.5	50.0		50.0	
		V _{IN} =1.65V, I _O =–4mA			17.0	50.0		50.0	
lcc	Quiescent Supply Cur- rent; All Channels On or Off	V _{IN} =V _{CC} or GND I _{OUT} =0	5.5			1		10	μΑ
	Analog Signal Range		Vcc	0		Vcc	0	Vcc	V
RRANGE	On Resistance Over	I_A =-30mA, 0 \leq V _{Bn} \leq V _{CC}	4.5					25.0	Ω
	(Notes 3, 7)	I_A =-24mA, 0 \leq V _{Bn} \leq V _{CC}	3.0					50.0	
		I_A =-8mA, $0 \le V_{Bn} \le V_{CC}$	2.3					100	
		I_A =-4mA, $0 \le V_{Bn} \le V_{CC}$	1.65					300	
ΔR_{ON}	On Resistance Match	I _A =-30mA, V _{Bn} =3.15	4.5		0.15				Ω
	(Notes 3, 4, 5)	I _A =-24mA, V _{Bn} 2.1	3.0		0.2				
		I _A =-8mA, V _{Bn} =1.6	2.3		0.5				
		I _A =–4mA, V _{Bn} =1.15	1.65		0.5				
νικυ	Voltage Under- shoot	0.0mA ≤ I _{IN} ≤–50, OE 5.5v	5.5					-2	V
Rflat	On Resistance Flatness	$I_{A}\text{=-30mA, 0} \leq V_{Bn} \leq V_{CC}$	5.0		6.0				Ω
	(110185 3, 4, 0)	$I_A = -24 m A, \ 0 \le V_{Bn} \le V_{CC}$	3.3		12.0				1
		$I_{A}\text{=-8mA, 0} \leq V_{Bn} \leq V_{CC}$	2.5		28.0				1
		$I_{A}\text{=}-4mA,0\leq V_{Bn}\leq V_{CC}$	1.8		125				1

Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B Ports).
Parameter is characterized, but not tested in production.
ΔR_{ON} = R_{ON} max - R_{ON} minimum measured at identical V_{CC}, temperature, and voltage levels.
Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.
Guaranteed by design.

AC ELECTRICAL CHARACTERISTICS

				т	_A = +25°	°C	T _A = -40°C	C to +85°C		
Symbol	Parameter	Conditions	Vcc (V)	Min.	Тур.	Max.	Min.	Max.	Units	Figure
tphl, tplh	Propagation Delay	V _I = OPEN	1.65 to 1.95						ns	Figure 5
	Bus-IO-Bus (Note o)		2.3 to 2.7			1.2		1.2		Figure 6
			3.0 to 3.6			0.8		0.8		
			4.5 to 5.5			0.3		0.3		
tPZL, tPZH	Output Enable Time	$V_1 = 2 \times V_{CC}$ for t_{PZL}	1.65 to 1.95	7.0		23.0	7.0	24.0	ns	Figure 5
	$(A \text{ to } B_n)$	$v_1 = 0$ v ioi t_{PZH}	2.3 to 2.7	3.5		13.0	3.5	14.0		Figure 6
			3.0 to 3.6	2.5		6.9	2.5	7.6		
			4.5 to 5.5	1.7		5.2	1.7	5.7		
tplz, tphz	Output Disable Time	$V_1 = 2 \times V_{CC}$ for t_{PLZ}	1.65 to 1.95	3.0		12.5	3.0	13.0	ns	Figure 5
	(A Port to B Port)	D B Port) $V_1 = 0 V \text{ for } t_{PHZ}$	2.3 to 2.7	2.0		7.0	2.0	7.5		Figure 6
	. ,		3.0 to 3.6	1.5		5.0	1.5	5.3		
			4.5 to 5.5	0.8		3.5	0.8	3.8		
tввм	Break–Before–Make		1.65 to 1.95	0.5			0.5		ns	Figure 7
	Time (Note 9)		2.3 to 2.7	0.5			0.5			
			3.0 to 3.6	0.5			0.5			
			4.5 to 5.5	0.5			0.5			
Q	Charge Injection	$C_L = 0.1 \text{ nF}, V_{GEN} = 0 \text{ V}$	5.0		7.0				рС	Figure 8
	(Note 9)	$R_{GEN} = 0 \Omega$	3.3		3.0					
OIRR	Off Isolation (Note 10)	$R_L = 50 \Omega$, f = 10 MHz	1.65 to 5.5		-57.0				dB	Figure 9
Xtalk	Crosstalk	$R_L = 50 \Omega$, f = 10 MHz	1.65 to 5.5		-54.0				dB	Figure 10
BW	–3dB Bandwidth	R _L = 50 Ω	1.65 to 5.5		250				MHz	Figure 13
THD	Total Harmonic Distor- tion (Note 9)	R_L = 600 Ω, 0.5 V _{PP} , f = 20 Hz to 20 KHz	5.0		.011				%	

8. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage source (zero output impedance).

9. Guaranteed by design.

10. Off Isolation = 20 $\log_{10} [V_A / V_{Bn}]$.

CAPACITANCE (Note 11)

Symbol	Parameter	Conditions	Тур.	Max.	Units	Figure
CIN	Control Pin Input Capacitance	$V_{CC} = 0 V$	2.3		pF	
Сю-в	B Port Off Capacitance	$V_{CC} = 5.0 V$	6.5		pF	Figure 11
CIOA-ON	A Port Capacitance When Switch Is Enabled	$V_{CC} = 5.0 V$	18.5		pF	Figure 12

11. $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized, but not tested in production.

UNDERSHOOT CHARACTERISTIC (Note 12)

Symbol	Parameter	Min.	Тур.	Units	Figure
νουτυ	Output Voltage During Undershoot	2.5	V _{OH} – 0.3	V	Figure 3

12. This test is intended to characterize the device's protective capabilities by maintaining output signal integrity during an input transient voltage undershoot event.

Figure 3. Output Voltage During Undershoot

DEVICE TEST CONDITIONS

Parameter Value		Units
V _{IN}	see Figure 4	V
$R_1 = R_2$	100	KΩ
V _{TRI}	7.0	V
V _{CC}	5.5	V

Figure 4. Transient Input Voltage Waveform

AC Loading and Waveforms

Notes:

Input driven by 50 Ω source terminated in 50 $\Omega.$ C_L includes load and stray capacitance, C_L = 50 pF Input PRR = 1.0 MHz, t_W = 500 ns

Figure 5. AC Test Circuit

AC Loading and Waveforms (continued)

Figure 13. Bandwidth

SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD ISSUE A

DATE 07 JUL 2010

ONSEM

SIDE VIEW

Notes:

(1) All dimensions are in millimeters. Angles in degrees.

(2) Complies with JEDEC MO-203.

END VIEW

DOCUMENT NUMBER:	98AON34266E	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SC-88 (SC-70 6 LEAD), 1.25X2		PAGE 1 OF 1				
onsemi and ONSEMi are tradema the right to make changes without furth purpose, nor does onsemi assume a special, consequential or incidental de	onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.						

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>