MMBT2369L, MMBT2369AL

Switching Transistors

NPN Silicon

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	15	Vdc
Collector - Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	40	Vdc
Collector - Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	40	Vdc
Emitter - Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.5	Vdc
Collector Current - Continuous	I_{C}	200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board	P_{D}	225	mW
(Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
Derate above $25^{\circ} \mathrm{C}$			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{FR}-5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.
2. Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in} .99 .5 \%$ alumina.
ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MMBT2369LT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel
MMBT2369LT3G	SOT-23 (Pb-Free)	$10,000 /$ Tape \& Reel
SMMBT2369LT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel
MMBT2369ALT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel
SMMBT2369ALT1G	SOT-23 (Pb-Free)	$3,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

[^0]ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
$\begin{aligned} & \text { Collector-Emitter Breakdown Voltage (Note 3) } \\ & \quad\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right) \end{aligned}$	$\mathrm{V}_{\text {(BR)CEO }}$	15	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{l}_{\mathrm{C}}=10 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{\text {(BR) }}$ CES	40	-	-	Vdc
$\begin{aligned} & \text { Collector-Base Breakdown Voltage } \\ & \left(I_{C}=10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{E}}=0\right) \end{aligned}$	$\mathrm{V}_{\text {(BR) }}$ CBO	40	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{\text {(BR) }}$ EBO	4.5	-	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{Vdc}, I_{\mathrm{E}}=0\right) \\ & \left(\mathrm{V}_{\mathrm{CB}}=20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, T_{\mathrm{A}}=150^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{I}_{\text {cbo }}$	-	-	$\begin{aligned} & 0.4 \\ & 30 \end{aligned}$	$\mu \mathrm{Adc}$
Collector Cutoff Current MMBT2369A ($\mathrm{V}_{\mathrm{CE}}=20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$I_{\text {ces }}$	-	-	0.4	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

DC Current Gain (Note 3) MMBT2369 ($\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}$) MMBT2369A ($\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}$) MMBT2369A ($\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=0.35 \mathrm{Vdc}$) MMBT2369A ($\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=0.35 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$) MMBT2369A ($\mathrm{l}=30 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=0.4 \mathrm{Vdc}$) MMBT2369 ($\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}$) MMBT2369A ($\mathrm{l}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}$)	$\mathrm{h}_{\text {FE }}$	40 - 40 20 30 20 20	- - - - -	$\begin{gathered} 120 \\ 120 \\ - \\ - \\ - \\ - \end{gathered}$	-
Collector-Emitter Saturation Voltage (Note 3) MMBT2369 ($\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}$) MMBT2369A ($\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}$) MMBT2369A ($\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}, \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$) MMBT2369A ($\mathrm{I}_{\mathrm{C}}=30 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=3.0 \mathrm{mAdc}$) MMBT2369A ($\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{mAdc}$)	$\mathrm{V}_{\text {CE(sat) }}$	- - - - -	-	$\begin{aligned} & 0.25 \\ & 0.20 \\ & 0.30 \\ & 0.25 \\ & 0.50 \end{aligned}$	Vdc
$\begin{aligned} & \text { Base-Emitter Saturation Voltage (Note } 3) \\ & \text { MMBT2369/A }\left(I_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}\right) \\ & \text { MMBT2369A }\left(\mathrm{IC}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right) \\ & \text { MMBT2369 }) \\ & \text { MMBT2369A }\left(\mathrm{IC}_{\mathrm{C}}=30 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=3.0 \mathrm{mAdc}\right) \\ & \text { MAdc, } \left.I_{\mathrm{B}}=10 \mathrm{mAdc}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	0.7	-	$\begin{aligned} & 0.85 \\ & 1.02 \\ & 1.15 \\ & 1.60 \\ & \hline \end{aligned}$	Vdc

SMALL-SIGNAL CHARACTERISTICS

Output Capacitance $\left(V_{C B}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, f=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{obo}}$	-	-	4.0	pF
Small Signal Current Gain $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right)$	h_{fe}	5.0	-	-	-

SWITCHING CHARACTERISTICS

Storage Time $\left(I_{B} 1=I_{B 2}=I_{C}=10 \mathrm{mAdc}\right)$	t_{s}	-	5.0	13	ns
Turn-On Time $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B} 1}=3.0 \mathrm{mAdc}\right)$	t_{on}	-	8.0	12	ns
Turn-Off Time $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B} 1}=3.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B} 2}=1.5 \mathrm{mAdc}\right)$	$\mathrm{t}_{\mathrm{off}}$	-	10	18	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

MMBT2369L, MMBT2369AL

PULSE WIDTH $\left(t_{1}\right)=300 \mathrm{~ns}$ DUTY CYCLE $=2 \%$

PULSE WIDTH $\left(\mathrm{t}_{1}\right)=300 \mathrm{~ns}$ DUTY CYCLE $=2 \%$

*Total shunt capacitance of test jig and connectors.

Figure 2. t_{on} Circuit - 100 mA
*Total shunt capacitance of test jig and connectors.

Figure 3. $\mathrm{t}_{\text {off }}$ Circuit - $\mathbf{1 0 m A}$

Figure 4. $\mathrm{t}_{\text {off }}$ Circuit - 100 mA

Figure 5. Turn-On and Turn-Off Time Test Circuit

MMBT2369L, MMBT2369AL

Figure 6. Junction Capacitance Variations

Figure 7. Typical Switching Times

PULSE WIDTH $\left(\mathrm{t}_{1}\right)=300 \mathrm{~ns}$ DUTY CYCLE $=2 \%$

Figure 9. Storage Time Equivalent Test Circuit

Figure 10. Maximum Collector Saturation Voltage Characteristics

MMBT2369L, MMBT2369AL

Figure 11. Minimum Current Gain Characteristics

Figure 12. Saturation Voltage Limits

SOT-23 (TO-236)
CASE 318
ISSUE AT
DATE 01 MAR 2023

SCALE 4:1

DETAIL

NDTES:

1. DIMENSIDNING AND TQLERANCING PER ASME Y14.5M,1994.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF THE BASE MATERIAL.
4. DIMENSIUNS D AND E DO NDT INCLUDE MDLD FLASH, PRDTRUSIINS, DR GATE BURRS.

DIM	MILLIMETERS		INCHES			
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
C	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
H_{E}	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Fr}$ dee indicator, " G " or microdot " P ", may or may not be present. Some products may not follow the Generic Marking.

RECDMMENDED M MUNTING FOUTPRINT

* For additional information on our Pb-Free strategy and soldering details, please download the IN Semiconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42226B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-23 (TO-236) | PAGE 1 OF 2 |

[^1] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE		
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18: PIN 1. NO CONNECTION 2. CATHODE 3. ANODE	STYLE 19: PIN 1. CATHODE 2. ANODE 3. CATHODE-ANODE	STYLE 20 : PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 2 OF 2

[^2]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

[^2]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

