onsemi

NPN High-Power Transistors

TIP33C

Designed for general-purpose power amplifier and switching applications.

Features

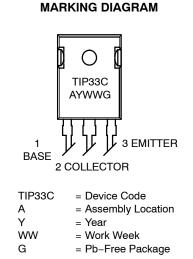
- ESD Ratings: Machine Model, C; > 400 V Human Body Model, 3B; > 8000 V
- Epoxy Meets UL 94 V-0 @ 0.125 in
- These Devices is Pb-Free*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	60	Vdc
Collector – Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	5.0	Vdc
Collector Current – Continuous – Peak (Note 1)	Ι _C	10 15	Adc Apk
Base Current – Continuous	Ι _Β	3.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	80 0.64	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.56	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	35.7	°C/W


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

TO-247 CASE 340L STYLE 3

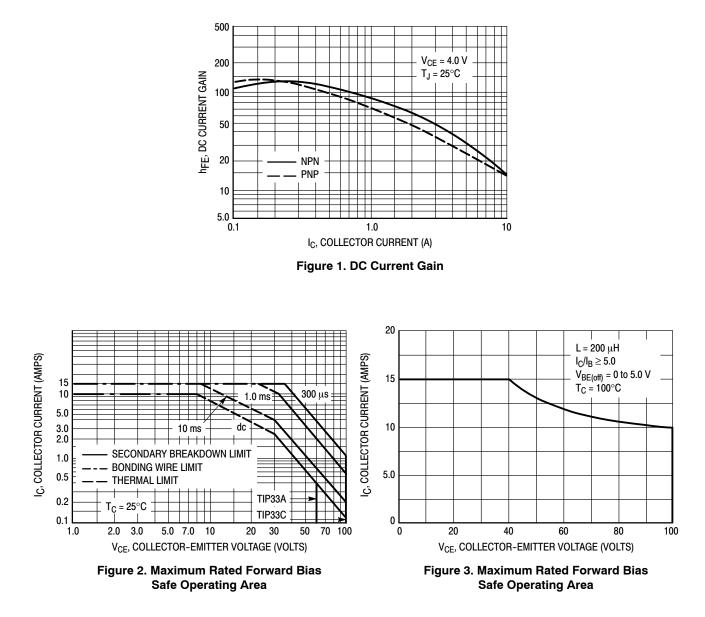
10 AMPERE NPN SILICON POWER TRANSISTORS 60 & 100 VOLT, 80 WATTS

ORDERING INFORMATION

Device	Package	Shipping [†]
TIP33CG	TO–247 (Pb–Free)	30 Units / Rail

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


TIP33C

ELECTRICAL CHARACTERISTICS (T_C = 25 $^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	•
Collector–Emitter Sustaining Voltage (Note 2) (I_C = 30 mA, I_B = 0)	V _{CEO(sus)}	60		Vdc
Collector–Emitter Cutoff Current $(V_{CE} = 30 \text{ V}, I_B = 0) (V_{CE} = 60 \text{ V}, I_B = 0)$	I _{CEO}	_	0.7	mA
Collector-Emitter Cutoff Current $(V_{CE} = Rated V_{CEO}, V_{EB} = 0)$	I _{CES}	_	0.4	mA
Emitter-Base Cutoff Current ($V_{EB} = 5.0 \text{ V}, I_C = 0$)	I _{EBO}	_	1.0	mA
ON CHARACTERISTICS (Note 2)				
DC Current Gain (I _C = 1.0 A, V _{CE} = 4.0 V) (I _C = 3.0 A, V _{CE} = 4.0 V)	h _{FE}	40 20	_ 100	-
Collector–Emitter Saturation Voltage ($I_C = 3.0 \text{ A}, I_B = 0.3 \text{ A}$) ($I_C = 10 \text{ A}, I_B = 2.5 \text{ A}$)	V _{CE(sat)}		1.0 4.0	Vdc
Base-Emitter On Voltage ($I_C = 3.0 \text{ A}, V_{CE} = 4.0 \text{ V}$) ($I_C = 10 \text{ A}, V_{CE} = 4.0 \text{ V}$)	V _{BE(on)}		1.6 3.0	Vdc
DYNAMIC CHARACTERISTICS	L			
Small–Signal Current Gain ($I_C = 0.5 \text{ A}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$)	h _{fe}	20	_	-
Current–Gain — Bandwidth Product ($I_C = 0.5 \text{ A}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ MHz}$)	f _T	3.0	-	MHz

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

TIP33C

FORWARD BIAS

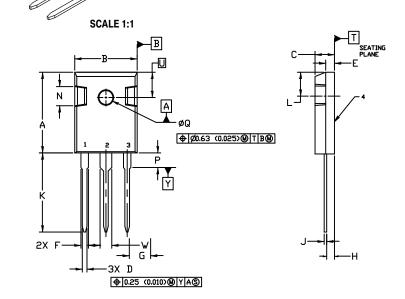
The Forward Bias Safe Operating Area represents the voltage and current conditions these devices can withstand during forward bias. The data is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10%, and must be derated thermally for $T_C > 25^{\circ}C$.

REVERSE BIAS

The Reverse Bias Safe Operating Area represents the voltage and current conditions these devices can withstand during reverse biased turn–off. This rating is verified under clamped conditions so the device is never subjected to an avalanche mode.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS


Onsemi

TO-247 CASE 340L ISSUE G

DATE 06 OCT 2021

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	HES
DIM	MIN.	MAX.	MIN.	MAX.
Α	20.32	21.08	0.800	0.830
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
E	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45	BSC	0.215 BSC	
Н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
к	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
Р		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15 BSC		0.242 BSC	
V	2.87	3.12	0.113	0.123

GENERIC **MARKING DIAGRAM***

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative