Power MOSFET 4.2 Amps, 20 Volts

N–Channel Enhancement–Mode Single SO–8 Package

Features

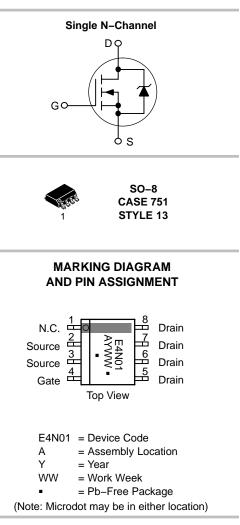
- High Density Power MOSFET with Ultra Low R_{DS(on)} Providing Higher Efficiency
- Miniature SO–8 Surface Mount Package Saving Board Space; Mounting Information for the SO–8 Package is Provided
- I_{DSS} Specified at Elevated Temperature
- Drain-to-Source Avalanche Energy Specified
- Diode Exhibits High Speed, Soft Recovery
- Pb–Free Package is Available

Applications

• Power Management in Portable and Battery–Powered Products, i.e.: Computers, Printers, PCMCIA Cards, Cellular & Cordless Telephones

Rating	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	20	V		
Drain-to-Gate Voltage (R_{GS} = 1.0 m Ω)	V _{DGR}	20	V		
Gate-to-Source Voltage - Continuous	V _{GS}	±10	V		
Thermal Resistance, Junction-to-Ambient (Note 1) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $25^{\circ}C$ Continuous Drain Current @ $70^{\circ}C$ Pulsed Drain Current (Note 4)	R _{0JA} P _D I _D I _{DM}	50 2.5 5.9 4.7 25	°C/W W A A A		
Thermal Resistance, Junction-to-Ambient (Note 2) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $25^{\circ}C$ Continuous Drain Current @ $70^{\circ}C$ Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _D	100 1.25 4.2 3.3 20	°C/W W A A A		
Thermal Resistance, Junction-to-Ambient (Note 3) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $25^{\circ}C$ Continuous Drain Current @ $70^{\circ}C$ Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _{DM}	162 0.77 3.3 2.6 15	°C/W S A A A A		
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C		
Single Pulse Drain-to-Source Avalanche Energy – Starting T _J = 25° C (V _{DD} = 20 Vdc, V _{GS} = 5.0 Vdc, Peak I _L = 7.5 Apk, L = 6 mH, R _G = 25Ω)	E _{AS}	169	mJ		
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	260	°C		

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

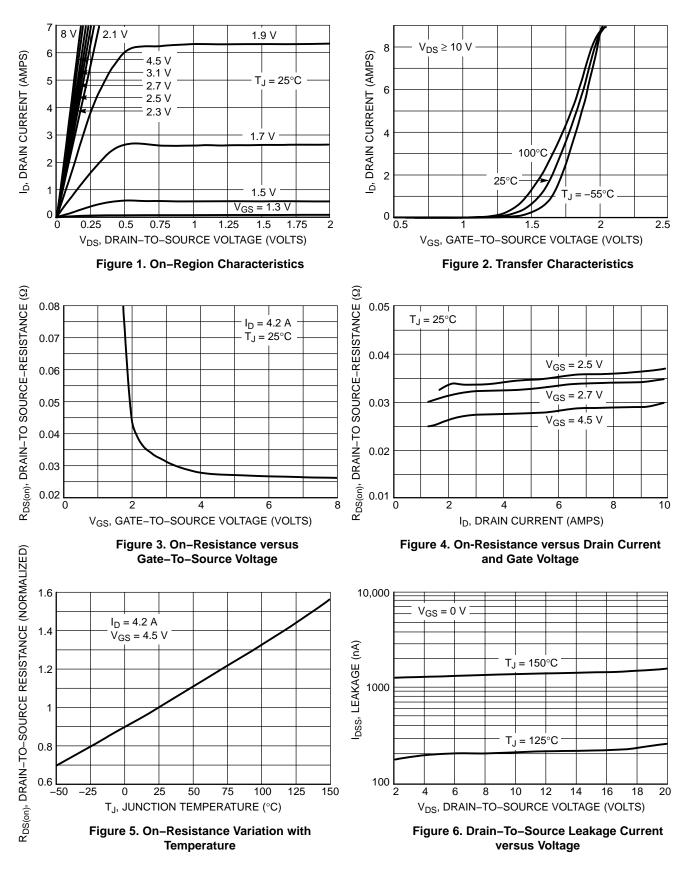

- 1. Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), $t\leq$ 10 seconds.
- Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), t = steady state.
- 3. Minimum FR-4 or G-10 PCB, t = Steady State.
- 4. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle = 2%.

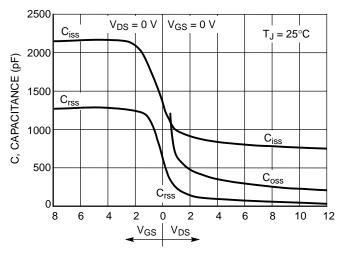
ON Semiconductor®

http://onsemi.com

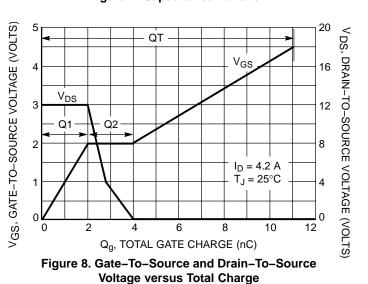
4.2 AMPERES, 20 VOLTS 0.045 Ω @ V_{GS} = 4.5 V

ORDERING INFORMATION


Device	Package	Shipping [†]
NTMS4N01R2	SO-8	2500 / Tape & Reel
NTMS4N01R2G	SO–8 (Pb–Free)	2500 / Tape & Reel

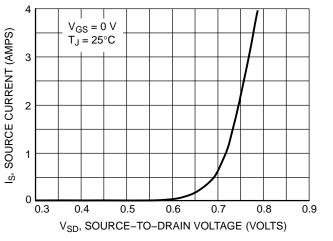

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

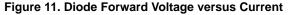
ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 5)


Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu \text{Adc})$ Temperature Coefficient (Positive)		V _{(BR)DSS}	20 -	- 20	-	Vdc mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = 12 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 25^{\circ}\text{C})$ $(V_{DS} = 12 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$ $(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 25^{\circ}\text{C})$		I _{DSS}	- - -	- - 0.2	1.0 10 -	μAdc
Gate-Body Leakage Current ($V_{GS} = +10 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$)		I _{GSS}	_	_	100	nAdc
Gate-Body Leakage Current ($V_{GS} = -10 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$)		I _{GSS}	_	_	-100	nAdc
ON CHARACTERISTICS						
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \ \mu Adc)$ Temperature Coefficient (Negative)		V _{GS(th)}	0.6	0.95 -3.0	1.2	Vdc mV/°C
Static Drain-to-Source On-State Resistance $(V_{GS} = 4.5 \text{ Vdc}, I_D = 4.2 \text{ Adc})$ $(V_{GS} = 2.7 \text{ Vdc}, I_D = 2.1 \text{ Adc})$ $(V_{GS} = 2.5 \text{ Vdc}, I_D = 2.0 \text{ Adc})$		R _{DS(on)}	- - -	0.030 0.035 0.037	0.04 0.05 -	Ω
Forward Transconductance $(V_{DS} = 2.5 \text{ Vdc}, I_D = 2.0 \text{ Adc})$		9 FS	_	10	-	Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	_	870	1200	pF
Output Capacitance	$(V_{DS} = 10 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	_	260	400	
Reverse Transfer Capacitance	, í	C _{rss}	-	60	100	
SWITCHING CHARACTERISTICS	(Notes 6 & 7)					
Turn-On Delay Time		t _{d(on)}	_	13	25	ns
Rise Time	$(V_{DD} = 12 \text{ Vdc}, I_D = 4.2 \text{ Adc}, V_{GS} = 4.5 \text{ Vdc},$	tr	_	35	65	
Turn–Off Delay Time	$R_G = 2.3 \Omega$	t _{d(off)}	_	45	75	
Fall Time		t _f	-	50	90	
Total Gate Charge	(V _{DS} = 12 Vdc,	Q _{tot}	-	11	16	nC
Gate-Source Charge	V _{GS} = 4.5 Vdc,	Q _{gs}	-	2.0	-	
Gate-Drain Charge	I _D = 4.2 Adc)	Q _{gd}	-	3.0	-	1
BODY-DRAIN DIODE RATINGS (N	lote 6)					
Diode Forward On–Voltage	$(I_{S} = 4.2 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_{S} = 4.2 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 125^{\circ}\text{C})$	V _{SD}	-	0.85 0.70	1.1 -	Vdc
Reverse Recovery Time		t _{rr}	-	20	-	ns
	(I _S = 4.2 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs)	ta	-	12	-	
		t _b	-	8.0	-]
Reverse Recovery Stored Charge		Q _{RR}	-	0.01	-	μC

5. Handling precautions to protect against electrostatic discharge is mandatory. 6. Indicates Pulse Test: Pulse Width = $300 \ \mu s \ max$, Duty Cycle = 2%. 7. Switching characteristics are independent of operating junction temperature.







DRAIN-TO-SOURCE DIODE CHARACTERISTICS

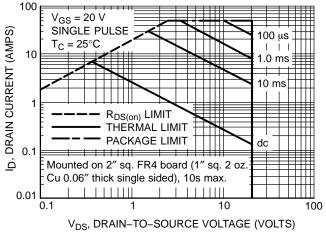
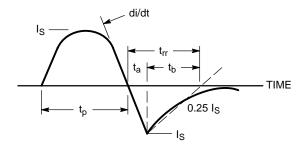



Figure 12. Maximum Rated Forward Biased Safe Operating Area

TYPICAL ELECTRICAL CHARACTERISTICS

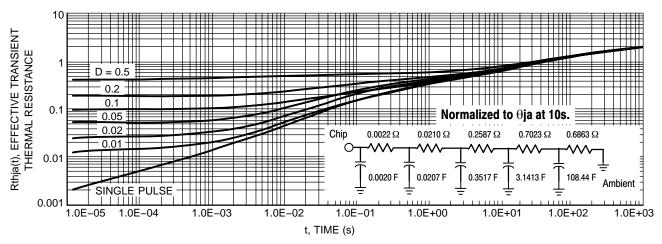
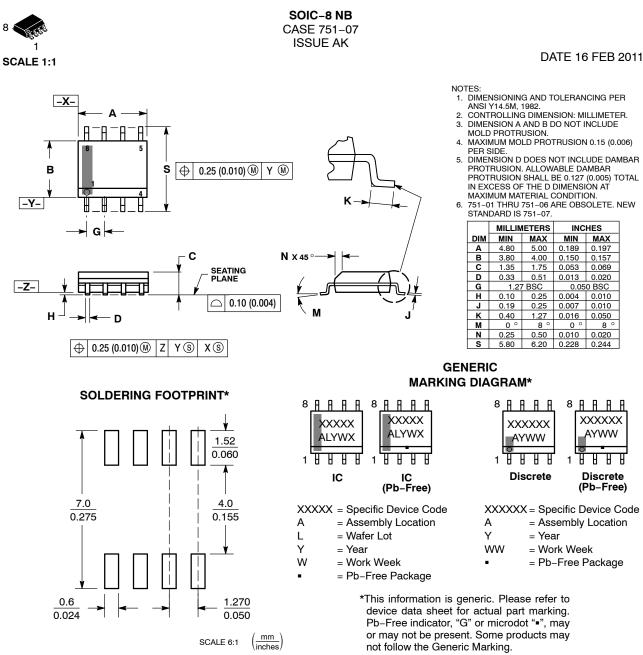



Figure 14. Thermal Response

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2		
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5.

6.

7.

8 GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT OVI O 2 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 З. BASE #2 COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	

onsem and of isor in are trademarks or semiconductor compension instructions, the do onsem or its subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced states and/or outrofts, or non-emitting the subsidiaries in the oniced stat purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative