ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Power GaN Cascode Transistor 600 V, 150 m Ω

Features

- Fast Switching
- Extremely Low Q_{rr}
- Transphorm Inside
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

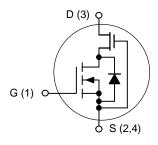
U	

ON Semiconductor®

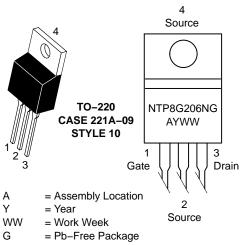
www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} TYP
600 V	150 mΩ @ 10 V

Para	Symbol	NDD	Unit			
Drain-to-Source Voltage			V _{DSS}	600	V	
Gate-to-Source Voltage			V _{GS}	±18	V	
Continuous Drain			I _D	17	А	
Current R _{0JC}	State	$T_C = 100^{\circ}C$		12		
Power Dissipation – $R_{\theta JC}$	Steady State	$T_C = 25^{\circ}C$	P _D	96	W	
Pulsed Drain Current	μ ⁻ μ ⁻		I _{DM}	60	A	
Operating Junction and Storage Temperature		T _J , T _{STG}	–55 to +150	°C		
Lead Temperature for	Τ _L	260	°C			


ABSOLUTE MAXIMUM RATINGS (T₁ = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL RESISTANCE

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	1.55	°C/W
Junction-to-Ambient Steady State	R_{\thetaJA}	62	°C/W

MARKING DIAGRAM & PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping
NTP8G206NG	TO-220 (Pb-Free)	50 Units / Rail

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Test Conditions	6	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 r	nA	600			V
Drain-to-Source Leakage Current	I _{DSS}	$V_{DS} = 600 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	$T_J = 25^{\circ}C$		2.5	90	μΑ
			$T_J = 150^{\circ}C$		8.0		
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = ±18 V				±100	nA
ON CHARACTERISTICS (Note 1)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 500$	Ο μΑ	1.6	2.1	2.6	V
Static Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 8 V, I _D = 11 A, T _J	j = 25°C		150	180	mΩ
		V _{GS} = 8 V, I _D = 11 A, T _J	= 175°C		340		
DYNAMIC CHARACTERISTICS							
Input Capacitance	C _{iss}	V _{DS} = 480 V, V _{GS} = 0 V, f = 1 MHz			760		pF
Output Capacitance	C _{oss}				44		
Reverse Transfer Capacitance	C _{rss}				5.0		
Effective output capacitance, energy related (Note 3)	C _{o(er)}	V_{GS} = 0 V, V_{DS} = 0 to 480 V			64		
Effective output capacitance, time related (Note 4)	C _{o(tr)}	I_D = constant, V_{GS} = 0 V, V_{DS} = 0 to 480 V			105		
Total Gate Charge	Qg				6.2	9.3	nC
Gate-to-Source Charge	Q _{gs}	V _{DS} = 100 V, I _D = 11 A, V ₀	_{GS} = 4.5 V		2.1		
Gate-to-Drain Charge	Q _{gd}				2.2		
SWITCHING CHARACTERISTICS (Note	e 2)						
Turn-on Delay Time	t _{d(on)}				6.2		ns
Rise Time	t _r	V = 480 V, I = 1	1 A,		4.5		
Turn-off Delay Time	t _{d(off)}	$V_{\rm GS} = 10 \text{ V}, \text{ R}_{\rm G} = 2 \Omega$			9.7		

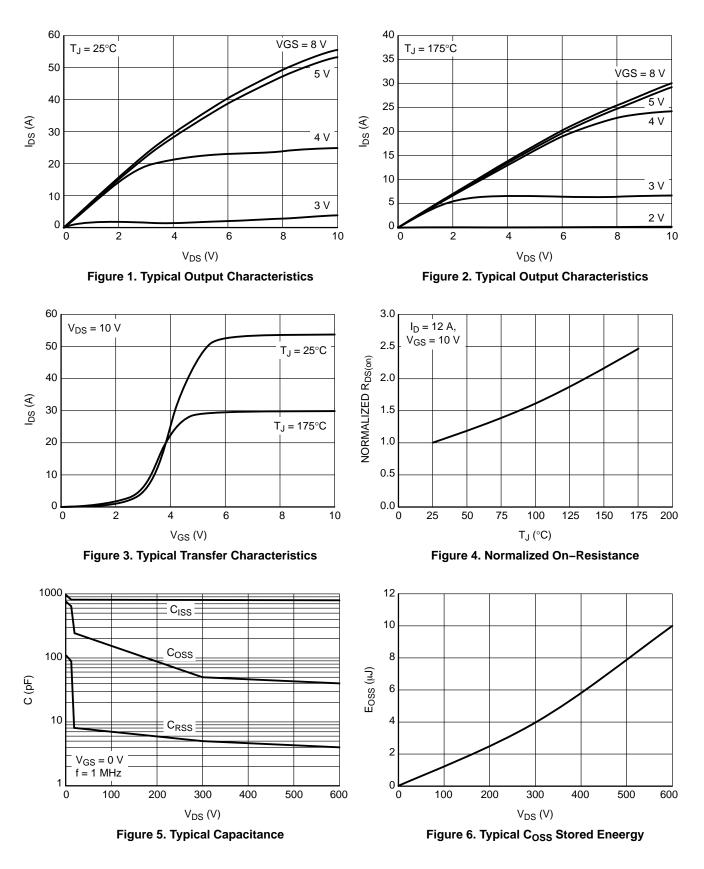
SOURCE-DRAIN DIODE CHARACTERISTICS

Fall Time

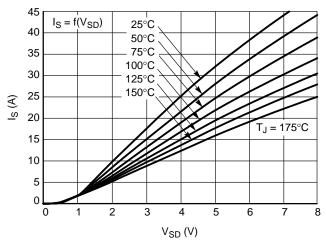
Diode Forward Voltage	V _{SD}	$I_{S} = 11 \text{ A}, V_{GS} = 0 \text{ V}$	$T_J = 25^{\circ}C$	2.2	V
Reverse Recovery Time	t _{rr}	V _{GS} = 0 V, V _{DD} = 400 V		17	ns
Reverse Recovery Charge	Q _{rr}	$I_{\rm S} = 11 {\rm A}, {\rm d}_{\rm i}/{\rm d}_{\rm t} = 2000 {\rm d}_{\rm c}$) A/μs	53	nC

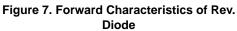
4.0

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


1. Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

t_{d(off)}


t_f


Pulse Width ≤ 300 µs, Duty Cycle ≤ 270.
Switching characteristics are independent of operating junction temperatures.
C_{o(er)} is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{(BR)DSS}
C_{o(tr)} is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{(BR)DSS}

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

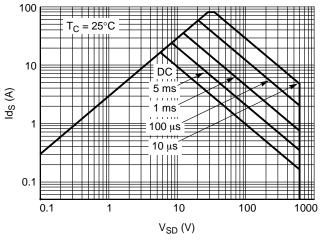
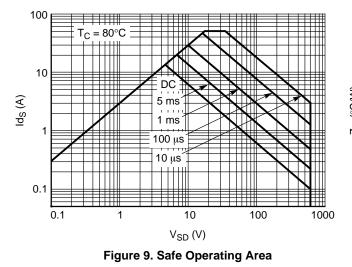



Figure 8. Safe Operating Area

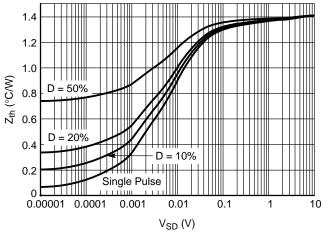


Figure 10. Transient Thermal Resistance

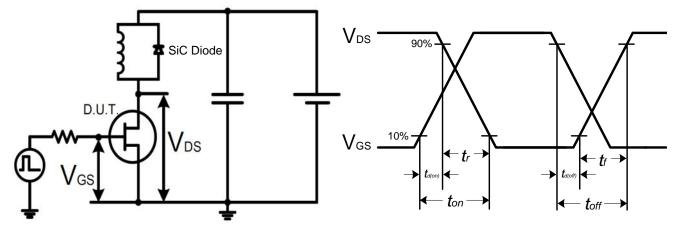


Figure 11. Switching Time Test Circuit

Figure 12. Switching Time Waveform

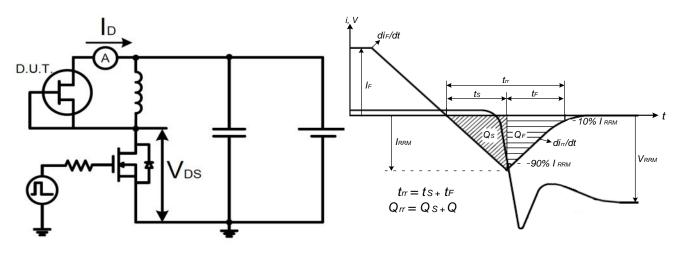
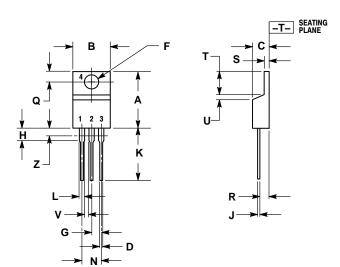



Figure 13. Test Circuit for Reverse Diode Characteristics

Figure 14. Diode Recovery Waveform

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AH**

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI 2

VI4.5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE 3. ALLOWED.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.415	9.66	10.53	
C	0.160	0.190	4.07	4.83	
D	0.025	0.038	0.64	0.96	
F	0.142	0.161	3.61	4.09	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.161	2.80	4.10	
J	0.014	0.024	0.36	0.61	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
Ν	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045		1.15		
Ζ		0.080		2.04	

STYLE 10: PIN 1. GATE

2. SOURCE DRAIN 3. SOURCE 4.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and eventors and reasonable attornow for any other or ender the original term of parts patient of the original term of the speciation with event or insufficient or ender the original term of the speciation and the application in which was and proceenable attornow or used of any event or index of the original term or to distributors harmless against all claims, costs, damages, and avagences and pacentible at expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative