ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Mux / Demux Bus Switch

7SB3257

The 7SB3257 Mux / Demux Bus Switch is an advanced high-speed line switch in ultra-small footprint.

Features

- High Speed: $t_{PD} = 0.25 \text{ ns (Max)} @ V_{CC} = 4.5 \text{ V}$
- 3 Ω Switch Connection Between 2 Ports
- Power Down Protection Provided on Inputs
- Ultra-Small Packages
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

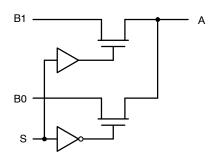
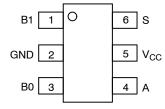
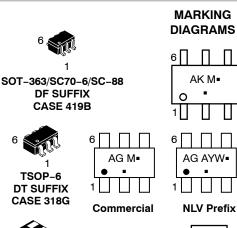



Figure 1. Logic Diagram

B1 1 6 S
GND 2 5 V
B0 3 4 A

Figure 2. TSOP-6/SC-88 (Top View)

Figure 3. ULLGA6/UDFN6 (Top View)


Function Table

Input S	Function
L	A = B0
Н	A = B1

ON Semiconductor®

www.onsemi.com

M K

ULLGA6 1.45 x 1.0 CASE 613AF

ULLGA6

1.2 x 1.0 CASE 613AE

UDFN6 1.0 x 1.0 CASE 517BX

UDFN6 1.2 x 1.0 CASE 517AA

UDFN6 1.45 x 1.0 CASE 517AQ

AK, AG, K, D, L = Specific Device Code

1 = Date Code

A = Assembly Location

Y = Year

V = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

1

Table 1. MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _{IN}	Control Pin Input Voltage	-0.5 to +7.0	V
V _{I/O}	Switch Input / Output Voltage	-0.5 to +7.0	V
I _{IK}	Control Pin DC Input Diode Current V _{IN} < GND	-50	mA
I _{OK}	Switch I/O Port DC Diode Current V _{I/O} < GND	-50	mA
I _O	On-State Switch Current	±128	mA
	Continuous Current Through V _{CC} or GND	±150	mA
I _{CC}	DC Supply Current per Supply Pin	±150	mA
I _{GND}	DC Ground Current per Ground Pin	±150	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	150	°C
$\theta_{\sf JA}$	Thermal Resistance SC-88 / TSOP-6 (Note 1) ULLGA6/UDFN6	333 496	°C/W
P_{D}	Power Dissipation in Still Air at 85°C SC-88 / TSOP-6 (Note 1) ULLGA6/UDFN6	200 252	mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage Human Body Mode (Note 2) Machine Mode (Note 3) Charged Device Mode (Note 4)	>2000 >200 N/A	V
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below GND at 85°C (Note 5)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.

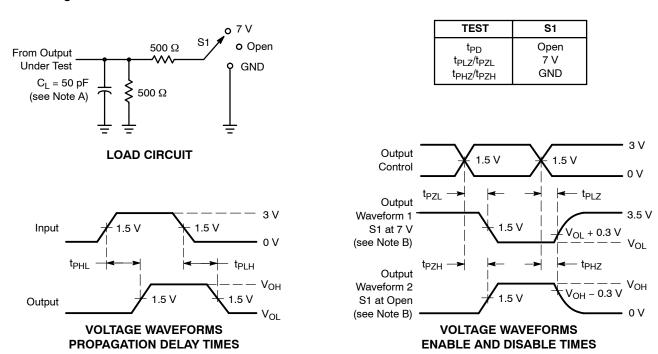
- 2. Tested to EIA/ JESD22-A114-A
- 3. Tested to EIA/ JESD22-A115-A
- 4. Tested to JESD22-C101-A
- 5. Tested to EIA / JESD78.

Table 2. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
V _{CC}	Positive DC Supply Voltage		5.5	V
V _I	Control Pin Input Voltage		5.5	V
V _{I/O}	Switch Input / Output Voltage	0	5.5	V
T _A	Operating Free-Air Temperature		+125	°C
Δt / ΔV	Input Transition Rise or Fall Rate Control Input Switch I/O		5 DC	nS/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 3. DC ELECTRICAL CHARACTERISTICS


					Γ _A = 25°0	2	T _A = -55°C	to +125°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{IK}	Clamp Diode Voltage	I _{IN} = -18 mA	4.5			-1.2		-1.2	V
V _{IH}	High-Level Input Voltage (Control)		4.0 to 5.5	2.0			2.0		V
V_{IL}	Low-Level Input Voltage (Control)		4.0 to 5.5			0.8		0.8	V
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 \text{ V}$	5.5			±0.1		±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{I/O} = 0 to 5.5 V	0			±0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current	I _O = 0, V _{IN} = V _{CC} or 0 V	5.5			±0.1		±1.0	μΑ
Δl _{CC}	Increase in Supply Current (Control Pin)	One input at 3.4 V; Other inputs at V _{CC} or GND	5.5					2.5	mA
R _{ON}	Switch ON Resistance	$V_{I/O} = 0,$ $I_{I/O} = 64 \text{ mA}$ $I_{I/O} = 30 \text{ mA}$	4.5		3 3	7 7		7 7	Ω
		V _{I/O} = 2.4, I _{I/O} = 15 mA	4.5		6	15		15	
		$V_{I/O} = 2.4,$ $I_{I/O} = 15 \text{ mA}$	4.0	_	10	20		20	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. AC ELECTRICAL CHARACTERISTICS

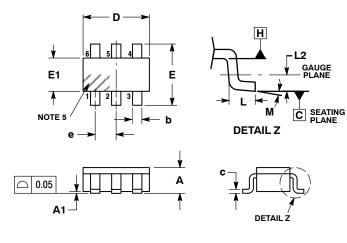
				1	Γ _A = 25°(T _A = - to +1	-55°C 25°C	
Symbol	Parameter	V _{CC} (V)	Test Condition	Min	Тур	Max	Min	Max	Unit
t _{PD}	Propagation Delay, A to B or B to A	4.0 to 5.5	See Figure 4			0.25		0.25	ns
	ALOBOIBLOA								
t _{EN}	Output Enable Time	4.5 to 5.5		0.8	2.5	4.2	0.8	4.2	ns
		4.0		0.8	3.0	4.6	0.8	4.6	
t _{DIS}	Output Disable Time	4.5 to 5.5		0.8	3.1	4.8	0.8	4.8	ns
		4.0		0.8	2.9	4.4	0.8	4.4	
C _{IN}	Control Input Capacitance	5.0	V _{IN} = 3 V or 0		2.0				pF
C _{IO(ON)}	Switch On Capacitance	5.0	Switch ON		10				pF
C _{IO(OFF)}	Switch Off Capacitance	5.0	Switch OFF		3.5				pF

AC Loading and Waveforms

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 Ω , $t_{r} \leq$ 2.5 ns. $t_{f} \leq$ 2.5 ns.
- D. The output is measured with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 4. Load Circuit and Voltage Waveforms

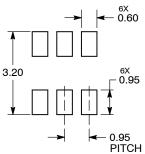
DEVICE ORDERING INFORMATION


Device	Package	Shipping [†]
7SB3257DTT1G		
NLV7SB3257DTT1G*	TSOP-6 (Pb-Free)	3000 / Tape & Reel
7SB3257DTT2G	`	
7SB3257DFT2G	SC-88 (Pb-Free)	3000 / Tape & Reel
7SB3257AMX1TCG	ULLGA6 - 1.45 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel
7SB3257BMX1TCG	ULLGA6 - 1.2 x 1.0, 0.4P (Pb-Free)	3000 / Tape & Reel
7SB3257CMX1TCG	ULLGA6 - 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel
7SB3257MU1TCG	UDFN6 – 1.45 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel
7SB3257MUTCG	UDFN6 - 1.2 x 1.0, 0.4P (Pb-Free)	3000 / Tape & Reel
7SB3257MU3TCG	UDFN6 - 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

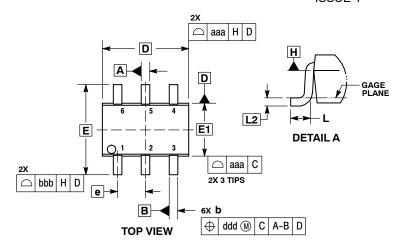
PACKAGE DIMENSIONS

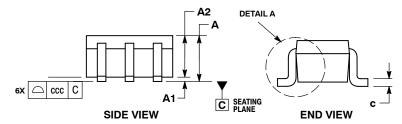

TSOP-6 CASE 318G-02 ISSUE V

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS D AND E1 ARE DETERMINED AT DATUM H.
 5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

	MILLIMETERS				
DIM	MIN NOM MAX				
Α	0.90	1.00	1.10		
A1	0.01	0.06	0.10		
b	0.25	0.38	0.50		
С	0.10	0.18	0.26		
D	2.90	3.00	3.10		
E	2.50	2.75	3.00		
E1	1.30	1.50	1.70		
е	0.85	0.95	1.05		
L	0.20	0.40	0.60		
L2	0.25 BSC				
M	0°	-	10°		

RECOMMENDED SOLDERING FOOTPRINT*

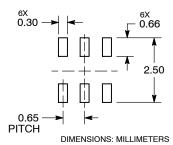

DIMENSIONS: MILLIMETERS


^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363

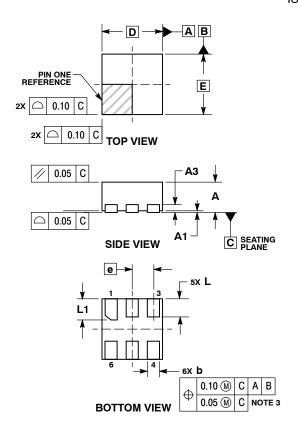
CASE 419B-02 **ISSUE Y**


NOTES:

- ITES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
 DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF
 THE PLASTIC BODY AND DATUM H.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
 DIMENSIONS B AND C APPLY TO THE FLAT SECTION OF THE
 LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
 DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN

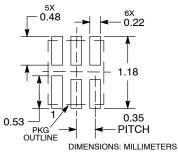
- ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MIL	LIMETE	RS		INCHES	3
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
Е	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
е		0.65 BS	С	0.026 BSC		С
L	0.26	0.36	0.46	0.010	0.014	0.018
L2		0.15 BS	C	(0.006 BS	SC
aaa	0.15				0.006	
bbb	0.30				0.012	
ccc		0.10			0.004	
ddd		0.10			0.004	

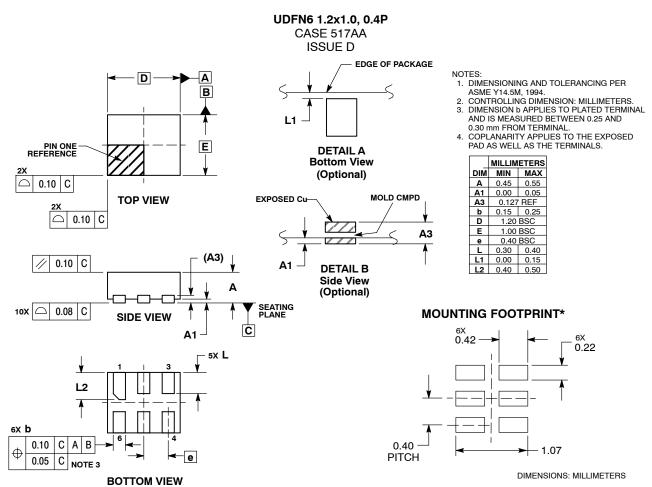

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

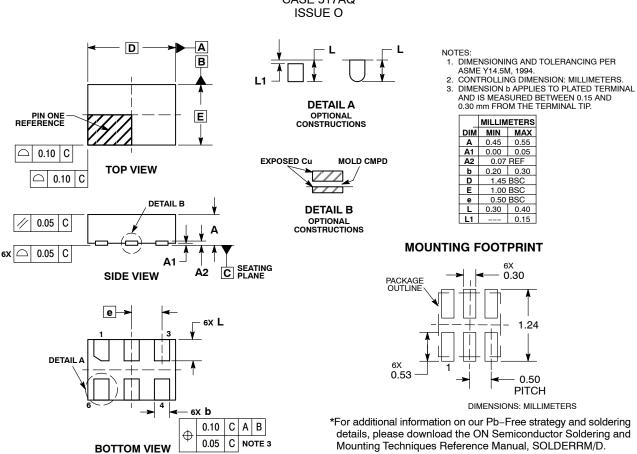

UDFN6 1.0x1.0, 0.35P CASE 517BX ISSUE O

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
 4. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

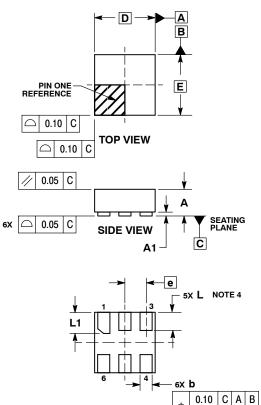

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00	0.05		
А3	0.13 REF			
b	0.12	0.22		
D	1.00	BSC		
E	1.00	BSC		
е	0.35 BSC			
L	0.25	0.35		
L1	0.30	0.40		

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


PACKAGE DIMENSIONS

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


PACKAGE DIMENSIONS

UDFN6 1.45x1.0, 0.5P CASE 517AQ

PACKAGE DIMENSIONS

ULLGA6 1.0x1.0, 0.35P CASE 613AD **ISSUE A**

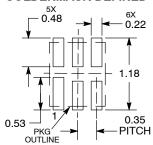
BOTTOM VIEW

0.05 C NOTE 3

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

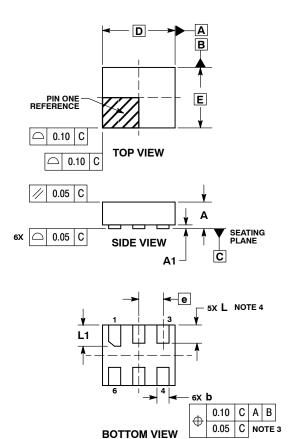

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.

 4. A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED. PACKAGE IS ALLOWED.

	MILLIMETERS		
DIM	MIN MAX		
Α	-	0.40	
A1	0.00	0.05	
b	0.12	0.22	
D	1.00	BSC	
Е	1.00	BSC	
е	0.35	BSC	
L	0.25	0.35	
L1	0.30	0.40	

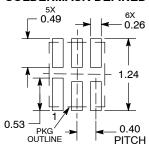
MOUNTING FOOTPRINT SOLDERMASK DEFINED*



DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

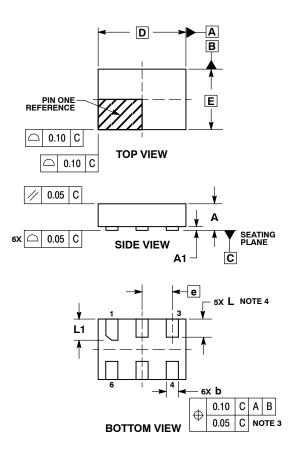
PACKAGE DIMENSIONS


ULLGA6 1.2x1.0, 0.4P CASE 613AE **ISSUE A**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.
 4. A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED.

	MILLIMETERS			
DIM	MIN	MAX		
Α		0.40		
A1	0.00	0.05		
b	0.15	0.25		
D	1.20	BSC		
E	1.00	BSC		
е	0.40 BSC			
L	0.25	0.35		
L1	0.35	0.45		

MOUNTING FOOTPRINT SOLDERMASK DEFINED*

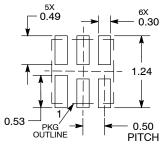


DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

ULLGA6 1.45x1.0, 0.5P CASE 613AF ISSUE A



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.
 A MAXIMUM OF 0.05 PULL BACK OF THE
- A MAXIMUM OF 0.05 PULL BACK OF THE PLATED TERMINAL FROM THE EDGE OF THE PACKAGE IS ALLOWED.

	MILLIMETERS		
DIM	MIN MAX		
Α	-	0.40	
A1	0.00	0.05	
b	0.15	0.25	
D	1.45	BSC	
E	1.00	BSC	
е	0.50 BSC		
L	0.25	0.35	
L1	0.30	0.40	

MOUNTING FOOTPRINT SOLDERMASK DEFINED*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor newsen to warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemni

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative