
Single N-Channel Power MOSFET

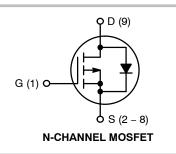
40 V, 240 A, 0.72 mΩ

Features

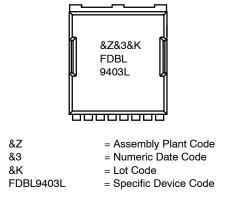
- Small Footprint (TOLL) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Current is limited by bondwire configuration.


- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
40 V	$0.72~\mathrm{m}\Omega$ @ 10 V	80 A
	0.98 m Ω @ 4.5 V	00 A

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet

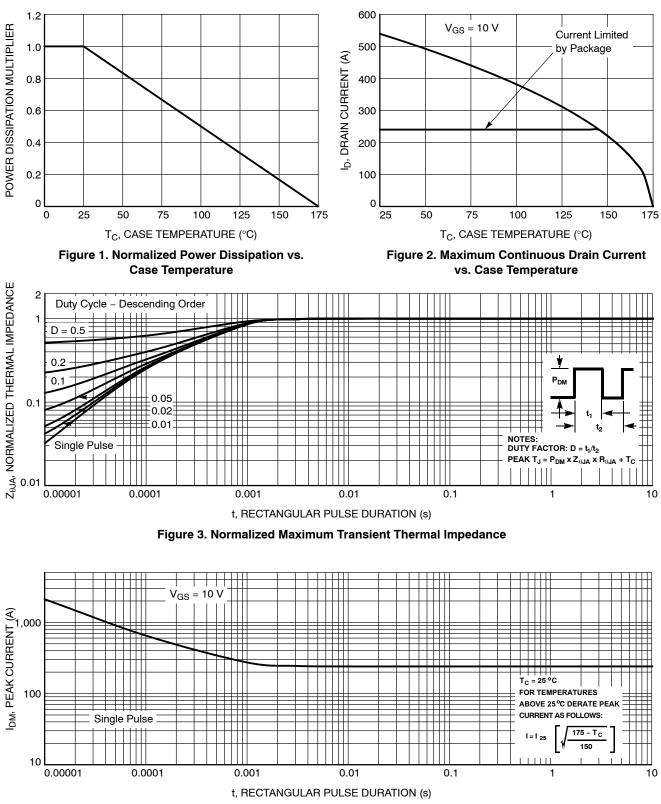
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Table 1. THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{\theta JC}$	Junction-to-Case - Steady State	0.42	°C/W
$R_{\theta JA}$	Junction-to-Ambient - Steady State (Note 4)	43	

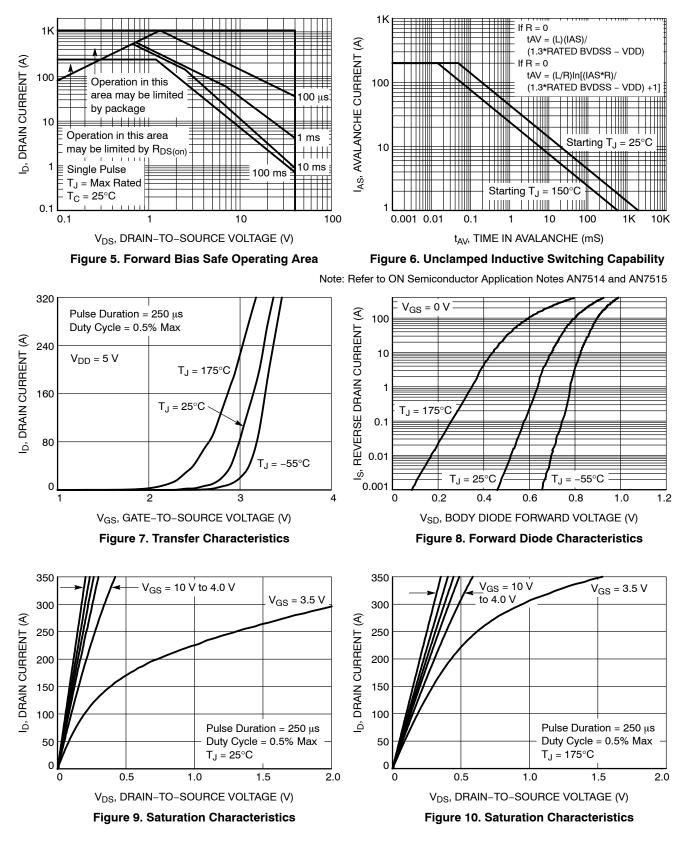
4. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS		•	•		
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	40	-	_	V
V _{(BR)DSS} /T _J	Drain-to-Source Breakdown Voltage Temperature Coefficienct		-	22.5	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 25^{\circ}\text{C}$ $V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 175^{\circ}\text{C}$			1 1	μA mA
I _{GSS}	Zero Gate Voltage Drain Current	V_{DS} = 0 V, V_{GS} = ±20 V	-	-	±100	nA
ON CHARAC	CTERISTICS (Note 5)					-
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$	1	1.75	3	V
$V_{GS(th)}/T_J$	Threshold Temperature Coefficient		-	-5.6	-	mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V_{GS} = 10 V, I_D = 80 A	-	0.59	0.72	mΩ
		V_{GS} = 4.5 V, I _D = 40 A	-	0.76	0.98	
CHARGES, O	CAPACITANCES & GATE RESISTANCE					
C _{iss}	Input Capacitance	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 20 V	-	14100	-	pF
C _{oss}	Output Capacitance		-	4070	-	
C _{rss}	Reverse Transfer Capacitance		-	300	-	
Rg	Gate Resistance	V_{GS} = 0.5 V, f = 1 MHz	-	3.3	-	Ω
Q _{g(tot)}	Total Gate Charge	V_{GS} = 4.5 V, V_{DS} = 32 V, I_{D} = 80 A	-	97	-	nC
		V_{GS} = 10 V, V_{DS} = 32 V, I_{D} = 80 A	-	203	-	
Q _{g(th)}	Threshold Gate Charge	V_{GS} = 0 V to 1 V	-	13	-	
Q _{gs}	Gate-to-Source Gate Charge	$V_{DD} = 32 \text{ V}, \text{ I}_{D} = 80 \text{ A}$	-	40	-	
Q _{gd}	Gate-to-Drain "Miller" Charge		-	27	-	
V _{GP}	Plateau Voltage		-	3	-	V
SWITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	V_{DD} = 20 V, I_D = 80 A, V_{GS} = 10 V, R_{GEN} = 6 Ω	-	21	-	ns
t _r	Turn-On Rise Time		-	42	-	
t _{d(off)}	Turn-Off Delay Time		_	288	-	
t _f	Turn-Off Fall Time		_	101	_	1

V _{SD}	Source-to-Drain Diode Voltage	$I_{SD} = 80 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$	-	0.79	1.25	V
		I_{SD} = 40 A, V_{GS} = 0 V	-	0.75	1.2	
t _{rr}	Reverse Recovery Time	V_{GS} = 0 V, dI_{SD}/dt = 100 A/µs, I_S = 80 A	-	96	-	ns
ta	Charge Time		_	46	-	
t _b	Discharge Time		_	50	-	
Q _{rr}	Reverse Recovery Charge		-	130	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

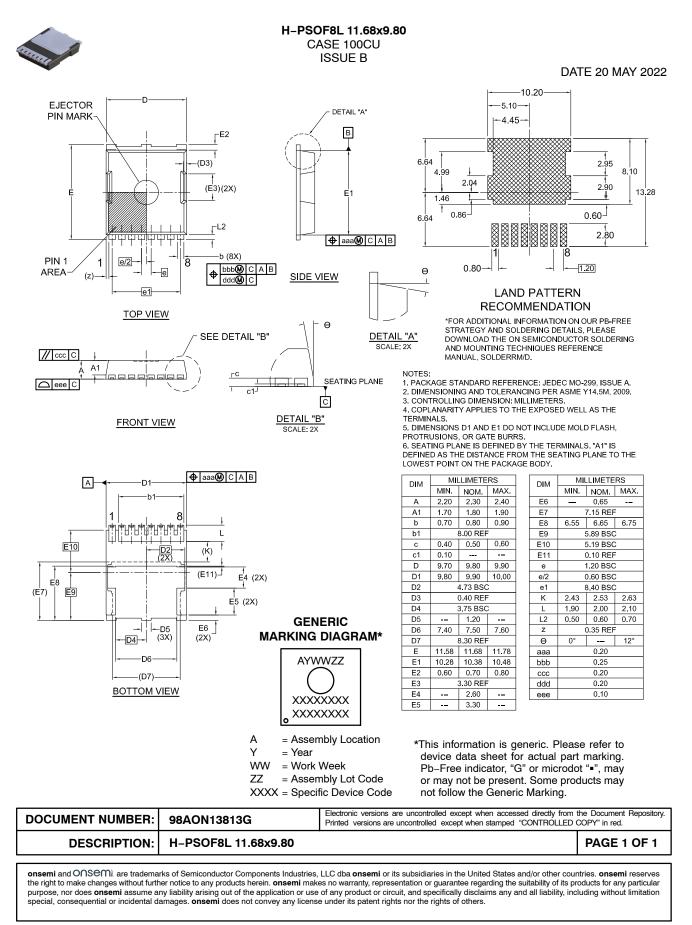

6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

8 2.0 Pulse Duration = 250 µs I_D = 80 A I_D = 80 A R_{DS(on)}, ON-RESISTANCE (mΩ) Duty Cycle = 0.5% Max V_{GS} = 10 V 6 4 2 $T_J = 175^{\circ}C$ Pulse Duration = 250 µs Duty Cycle = 0.5% Max $T_J = 25^{\circ}C$ 0 0.6 2 3 4 5 6 7 8 9 10 -80 -40 0 40 80 120 160 200 V_{GS}, GATE-TO-SOURCE VOLTAGE (V) TJ, JUNCTION TEMPERATURE (°C) Figure 12. Normalized R_{DS(on)} vs. Junction Figure 11. R_{DS(on)} vs. Gate Voltage Temperature NORMALIZED GATE THRESHOLD VOLTAGE 1.2 1.10 $V_{GS} = V_{DS}$ NORMALIZED DRAIN-TO-SOURCE $I_D = 5 \text{ mA}$ $I_D = 1 \text{ mA}$ BREAKDOWN VOLTAGE 0.01 U 0.95 1.0 0.8 0.6 0.90 0.4 -80 -40 0 40 80 120 160 200 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 13. Normalized Gate Threshold Voltage Figure 14. Normalized Drain-to-Source vs. Temperature Breakdown Voltage vs. Junction Temperature 100K 10 V_{GS}, GATE-TO-SOURCE VOLTAGE (V) $V_{DD} = 16$ I_D = 80 A Êψ 8 V_{DD} = 20 V Ciss V_{DD} = 24 V 10K CAPACITANCE (pF) Coss 6 1K 4 C_{rss} 100 2 f = 1 MHz V_{GS} = 0 V 10 0 150 100 30 60 90 120 180 210 10 0.1 1 0 V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Q_q, GATE CHARGE (nC) Figure 15. Capacitance vs. Drain-to-Source

TYPICAL CHARACTERISTICS


Figure 16. Gate Charge vs. Gate-to-Source Voltage

Voltage

PACKAGE MARKING AND ORDERING INFORMATION

Device	Marking	Package	Reel Size	Tape Width	Quantity
FDBL9403L-F085	FDBL9403L	H-PSOF8L (Pb-Free / Halogen Free)	13″	24 mm	2000 Units

ONSEM¹.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative