

MOSFET – Dual, N & P-Channel, POWERTRENCH®

2.5 V Specified

FDC6327C

General Description

These N & P-Channel 2.5 V specified MOSFETs are produced using **onsemi**'s advanced POWERTRENCH process that has been especially tailored to minimize on-state resistance and yet maintain low gate charge for superior switching performance.

These devices have been designed to offer exceptional power dissipation in a very small footprint for applications where the bigger more expensive SO-8 and TSSOP-8 packages are impractical.

Features

- N-Channel 2.7 A, 20 V $R_{DS(ON)} = 0.08 \Omega @ V_{GS} = 4.5 V$
- $R_{DS(ON)} = 0.12 \Omega @ V_{GS} = 2.5 V$ P-Channel -1.6 A, -20 V $R_{DS(ON)} = 0.17 \Omega @ V_{GS} = -4.5 V$

 $R_{DS(ON)} = 0.25 \Omega @ V_{GS} = -2.5 V$

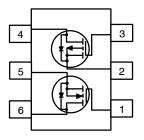
- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low R_{DS(ON)}
- SUPERSOT[™] -6 Package: Small Footprint (72% Smaller than SO-8); Low Profile (1 mm Thick)
- This is a Pb-Free Device

Applications

- DC/DC Converter
- Load Switch
- Motor Driving

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
20 V	0.08 Ω @ 4.5 V	2.7 A
	0.12 Ω @ 2.5 V	
V _{DSS}	R _{DS(ON)} MAX	I _D MAX
V _{DSS} -20 V	R _{DS(ON)} MAX 0.17 Ω @ -4.5 V	I _D MAX -1.6 A

TSOT23 6-Lead SUPERSOT™-6 CASE 419BL


MARKING DIAGRAM

327 = Specific Device Code
 M = Assembly Operation Month
 Pb-Free Package

(Note: Microdot may be in either location)

PINOUT

ORDERING INFORMATION

Device	Package	Shipping [†]
FDC6327C	TSOT-23-6 (Pb-free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

FDC6327C

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter		N-Channel	P-Channel	Unit
V _{DSS}	Drain-Source Voltage		20	-20	V
V _{GSS}	Gate-Source Voltage		±8	±8	V
I _D	Drain Current	- Continuous (Note 1a)	2.7	-1.9	Α
		- Pulsed	8	-8	Α
P_{D}	Power Dissipation	(Note 1a)	0.96		W
		(Note 1b)	0	.9	W
		(Note 1c)	0	.7	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		_55 to	o +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
R _θ JA	Thermal Resistance, Junction-to-Ambient (Note 1a)	130	°C/W
Rejc	Thermal Resistance, Junction-to-Case (Note 1)	60	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \ I_D = 250 \ \mu\text{A} \ V_{GS} = 0 \text{ V}, \ I_D = -250 \ \mu\text{A}$	N-Ch P-CH	20 –20	- -	_ _	٧
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μA,Referenced to 25°C I_D = -250 μA,Referenced to 25°C	N-Ch P-CH	- -	12 –19	<u>-</u> -	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16 V, V _{GS} = 0 V V _{DS} = -16 V, V _{GS} = 0 V	N-Ch P-CH	- -	- -	1 -1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 8 V, V _{DS} = 0 V	All	-	_	100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$	All	-	_	-100	nA
ON CHARA	ACTERISTICS (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$\begin{aligned} V_{DS} &= V_{GS}, \ I_D = 250 \ \mu A \\ V_{DS} &= V_{GS}, \ I_D = -250 \ \mu A \end{aligned}$	N-Ch P-CH	0.4 -0.4	0.9 -0.9	1.5 -1.5	٧
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C I_D = -250 μA, Referenced to 25°C	N-Ch P-CH	- -	-2.1 2.3	- -	mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$\begin{split} &V_{GS} = 4.5 \text{ V, } I_D = 2.7 \text{ A} \\ &V_{GS} = 4.5 \text{ V, } I_D = 2.7 \text{ A, } T_J = 125^{\circ}\text{C} \\ &V_{GS} = 2.5 \text{ V, } I_D = 2.2 \text{ A} \\ &V_{GS} = -4.5 \text{ V, } I_D = -1.6 \text{ A} \\ &V_{GS} = -4.5 \text{ V, } I_D = -1.6 \text{ A, } T_J = 125^{\circ}\text{C} \\ &V_{GS} = -2.5 \text{ V, } I_D = -1.3 \text{ A} \end{split}$	N-Ch N-Ch N-Ch P-CH P-CH	- - - -	0.069 0.094 0.093 0.141 0.203 0.205	0.08 0.13 0.12 0.17 0.27 0.25	Ω
I _{D(on)}	On-State Drain Current	V _{GS} = 4.5 V, V _{DS} = 5 V V _{GS} = -4.5 V, V _{DS} = -5 V	N-Ch P-CH	8 -8	- -	- -	Α
9FS	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_D = 2.7 \text{ A}$ $V_{DS} = -5 \text{ V}, I_D = -1.9 \text{ A}$	N-Ch P-CH	- -	7.7 4.5	- -	S

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Unit
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	N-Channel V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz	N-Ch P-CH	- -	325 315	_ _	pF
C _{oss}	Output Capacitance	P-Channel V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz	N-Ch P-CH	- -	75 65	- -	pF
C _{rss}	Reverse Transfer Capacitance	VDS = 10 V, VGS = 0 V, 1 = 1.0 WHZ	N-Ch P-CH	-	35 24	- -	pF
SWITCHIN	G CHARACTERISTICS (Note 2)						
t _{d(on)}	Turn-On Delay Time	N-Channel V _{DD} = 10 V, I _D = 1 A,	N-Ch P-CH	1 1	5 7	15 14	ns
t _r	Turn-On Rise Time	- V _{GS} = 4.5 V, R _{GEN} = 6 Ω	N-Ch P-CH	-	9 14	18 25	ns
t _{d(off)}	Turn-Off Delay Time	P-Channel V _{DD} = -10 V, I _D = -1 A,	N-Ch P-CH	- -	12 14	22 25	ns
t _f	Turn-Off Fall Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$	N-Ch P-CH	- -	3 3	9 9	ns
Qg	Total Gate Charge	N-Channel V_{DS} = 10 V, I_D = 2.7 A, V_{GS} = 4.5 V	N-Ch P-CH	- -	3.25 2.85	4.5 4.0	nC
Q _{gs}	Gate-Source Charge	P-Channel V _{DS} = -10 V, I _D = -1.9 A, V _{GS} = -4.5 V	N-Ch P-CH	- -	0.65 0.68	_ _	nC
Q_{gd}	Gate-Drain Charge	VDS = -10 V, ID = -1.9 A, VGS = -4.5 V	N-Ch P-CH	- -	0.90 0.65	_ _	nC
DRAIN-SC	OURCE DIODE CHARACTERISTIC	S AND MAXIMUM RATINGS					
I _S	Maximum Continuous Drain-Source Diode Forward Current		N-Ch P-CH	- -	- -	0.8 -0.8	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 0.8 \text{ A (Note 2)}$ $V_{GS} = 0 \text{ V}, I_S = -0.8 \text{ A (Note 2)}$	N-Ch P-CH	-	0.76 -0.79	1.2 -1.2	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 $R_{\theta JA}$ is the sum of the junction–to–case and case–to–ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. Both devices are assumed to be operating and sharing the dissipated heat energy equally.

a. 130°C/W when mounted on a 0.125 in² pad of 2 oz.

b. 140°C/W when mounted on a 0.005 in² pad of 2 oz. copper.

c. 180°C/W when mounted on a 0.0015 in2 pad of 2 oz. copper.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0 %.

TYPICAL CHARACTERISTICS: N-CHANNEL

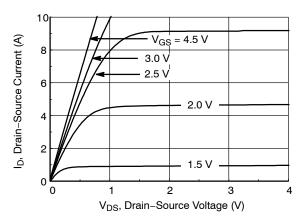


Figure 1. On-Region Characteristics

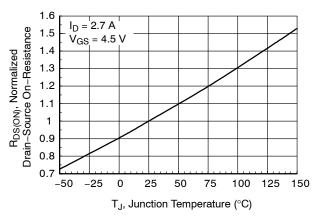


Figure 3. On–Resistance Variation with Temperature

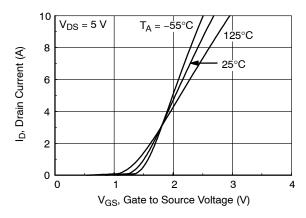


Figure 5. Transfer Characteristics

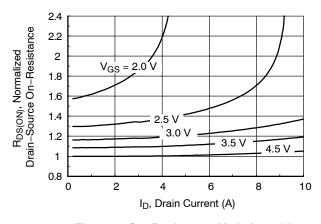


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

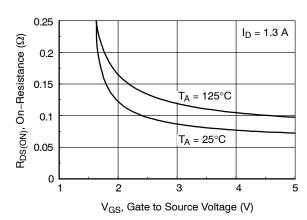


Figure 4. On-Resistance Variation with Gate-to-Source Voltage

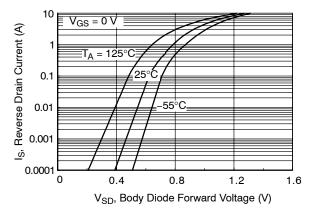


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

TYPICAL CHARACTERISTICS: N-CHANNEL (continued)

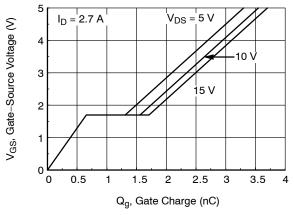


Figure 7. Gate Charge Characteristics

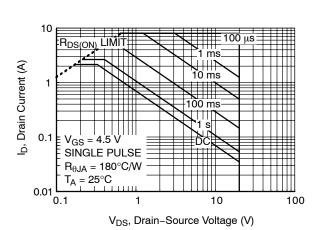


Figure 9. Maximum Safe Operating Area

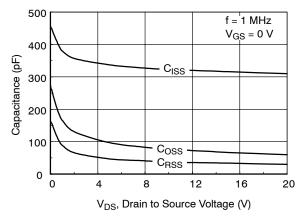


Figure 8. Capacitance Characteristics

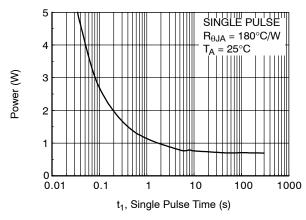


Figure 10. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS: P-CHANNEL

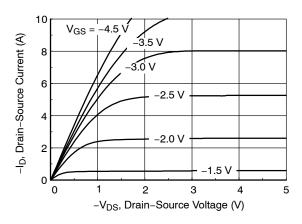


Figure 11. On-Region Characteristics

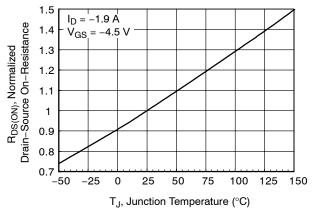


Figure 13. On–Resistance Variation with Temperature

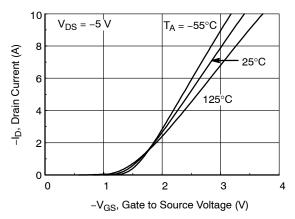


Figure 15. Transfer Characteristics



Figure 12. On-Resistance Variation with Drain Current and Gate Voltage

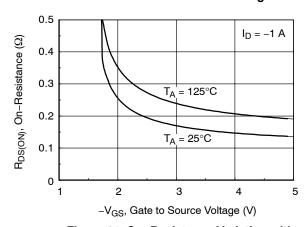


Figure 14. On–Resistance Variation with Gate–to–Source Voltage

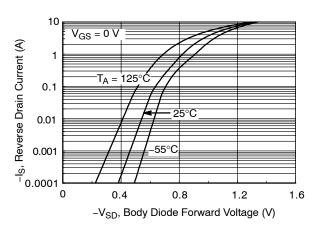


Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature

TYPICAL CHARACTERISTICS: P-CHANNEL (continued)

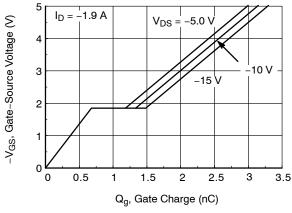


Figure 17. Gate Charge Characteristics

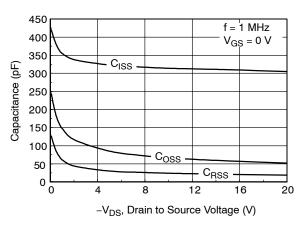


Figure 18. Capacitance Characteristics

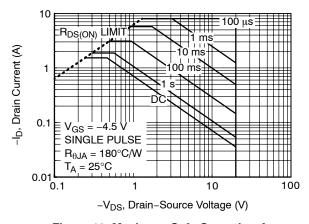


Figure 19. Maximum Safe Operating Area

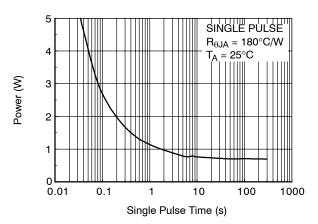


Figure 20. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS: N & P-CHANNEL

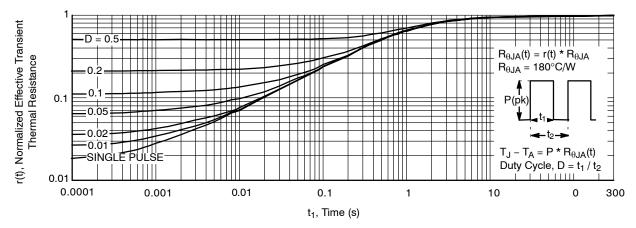
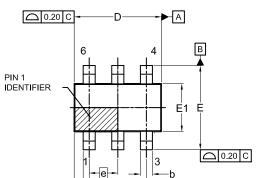
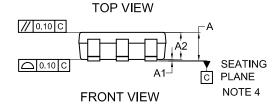
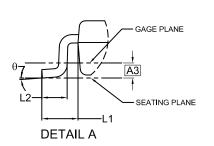


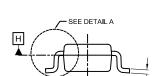
Figure 21. Transient Thermal Response Curve

FDC6327C


POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


SUPERSOT is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

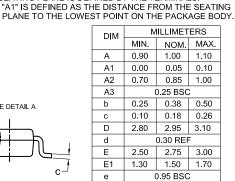

TSOT23 6-Lead CASE 419BL **ISSUE A**


DATE 31 AUG 2020

e1

NOTES:

SIDE VIEW


O \ / \ 4 \ 4

SYMM
မ
0.95
.00 MIN
2.60
l 1-0.70 M I N

1.

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

1.90 BSC

0.60 REF

0.40

0.60 10°

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. CONTROLLING DIMENSION: MILLIMETERS
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH,

PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.25MM PER END. DIMENSIONS D AND E1 ARE

e1

L1

L2

θ

0.20

0°

4. SEATING PLANE IS DEFINED BY THE TERMINALS.

DETERMINED AT DATUM H.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code M

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON83292G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSOT23 6-Lead		PAGE 1 OF 1		

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative