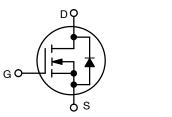
MOSFET – Power, N-Channel with Schottky Barrier Diode, Schottky Diode, μCool, WDFN 2X2 mm

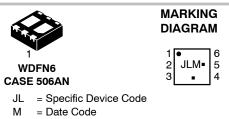
ON Semiconductor®


http://onsemi.com

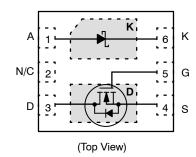
MOSFET

V _{(BR)DSS}	R _{DS(on)} MAX	ID MAX (Note 1)
	70 mΩ @ 4.5 V	
30 V	90 mΩ @ 2.5 V	4.6 A
	125 mΩ @ 1.8 V	
	250 mΩ @ 1.5 V	

SCHOTTKY DIODE


V _R MAX	V _F TYP	I _F MAX
30 V	0.47 V	2.0 A

N-CHANNEL MOSFET


к ठ **SCHOTTKY DIODE**

A C

= Pb-Free Package
 (Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

30 V, 4.6 A, 2.0 A

Features

- WDFN Package Provides Exposed Drain Pad for Excellent Thermal Conduction
- Co-Packaged MOSFET and Schottky For Easy Circuit Layout
- $R_{DS(on)}$ Rated at Low $V_{GS(on)}$ Levels, $V_{GS} = 1.5$ V
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- Low VF Schottky
- This is a Pb–Free Device

Applications

- DC-DC Converters
- Li-Ion Battery Applications in Cell Phones, PDA's, Media Players
- Color Display and Camera Flash Regulators

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Param	Symbol	Value	Unit		
Drain-to-Source Voltag	V _{DSS}	30	V		
Gate-to-Source Voltage	V _{GS}	±8.0	V		
Continuous Drain	Steady	$T_J = 25^{\circ}C$	۱ _D	3.7	Α
Current (Note 1)	State	$T_J = 85^{\circ}C$		2.7	
	t ≤ 5 s	$T_J = 25^{\circ}C$		4.6	
Power Dissipation (Note 1)	Steady State	T _{.1} = 25°C	PD	1.5	W
	t ≤ 5 s	, ,		2.3	1
Continuous Drain		$T_J = 25^{\circ}C$	Ι _D	2.5	Α
Current (Note 2)	Steady	$T_J = 85^{\circ}C$		1.8	
Power Dissipation (Note 2)	State	$T_J = 25^{\circ}C$	PD	0.71	
Pulsed Drain Current	t _p =	10 μs	I _{DM}	20	Α
Operating Junction and	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body D	iode) (Not	te 2)	۱ _S	2.4	Α
Lead Temperature for Se (1/8" from case for 10 s)		urposes	ΤL	260	°C
Marian water and the		. I	de de la la		-

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

SCHOTTKY DIODE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V _{RRM}	30	V
DC Blocking Voltage	V _R	30	V
Average Rectified Forward Current	١ _F	2.0	A

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	83	
Junction-to-Ambient – t \leq 5 s (Note 3)	$R_{ hetaJA}$	54	°C/W
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ extsf{ heta}JA}$	180	

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 25	0 μΑ	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = 250 \ \mu A$, Ref to	25°C		18.1		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}		$T_{J} = 25^{\circ}C$			1.0	μA
		V_{DS} = 24 V, V_{GS} = 0 V	T _J = 85°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±	8.0 V			100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$		0.4	0.7	1.0	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.8		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 4.5, I _D = 2	.0 A		47	70	mΩ
		V _{GS} = 2.5, I _D = 2	.0 A		56	90	1
		V _{GS} = 1.8, I _D = 1.	.8 A		88	125	1
		V _{GS} = 1.5, I _D = 1.	.5 A		133	250	1
	9 FS	V _{DS} = 10 V, I _D = 2			4.5		S

Input Capacitance	C _{ISS}		427		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 15 V	51		
Reverse Transfer Capacitance	C _{RSS}		32		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 V, V_{DS} = 15 V,$ $I_{D} = 2.0 A$	5.4	6.5	nC
Threshold Gate Charge	Q _{G(TH)}		0.5		
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = 2.0$ Å	0.8		
Gate-to-Drain Charge	Q _{GD}		1.24		
Gate Resistance	R _G		3.7		Ω

5. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

MOSFET ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition	าร	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	6 (Note 6)						
Turn-On Delay Time	t _{d(ON)}			4.8		ns	
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD} =	15 V,		9.2		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 2.0 \text{ A}, \text{ R}_G = 2.0 \Omega$			14.2		
Fall Time	t _f				1.7		
DRAIN-SOURCE DIODE CHARA	CTERISTICS						
Forward Recovery Voltage	V _{SD}		$T_J = 25^{\circ}C$		0.78	1.2	

Forward Recovery vollage	VSD	$V_{00} = 0 V IS = 2.0 A$	$I_{\rm J} = 25^{\circ}{\rm C}$	0.78	1.2	V
	$V_{GS} = 0 \text{ V}, \text{ IS} = 2.0 \text{ A}$	T _J = 125°C	0.62		v	
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, d _{ISD} /d _t = 100 A/µs, I _S = 2.0 A		10.5		
Charge Time	ta			7.6		ns
Discharge Time	t _b			2.9		
Reverse Recovery Time	Q _{RR}			5.0		nC

5. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2%.

6. Switching characteristics are independent of operating junction temperatures.

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

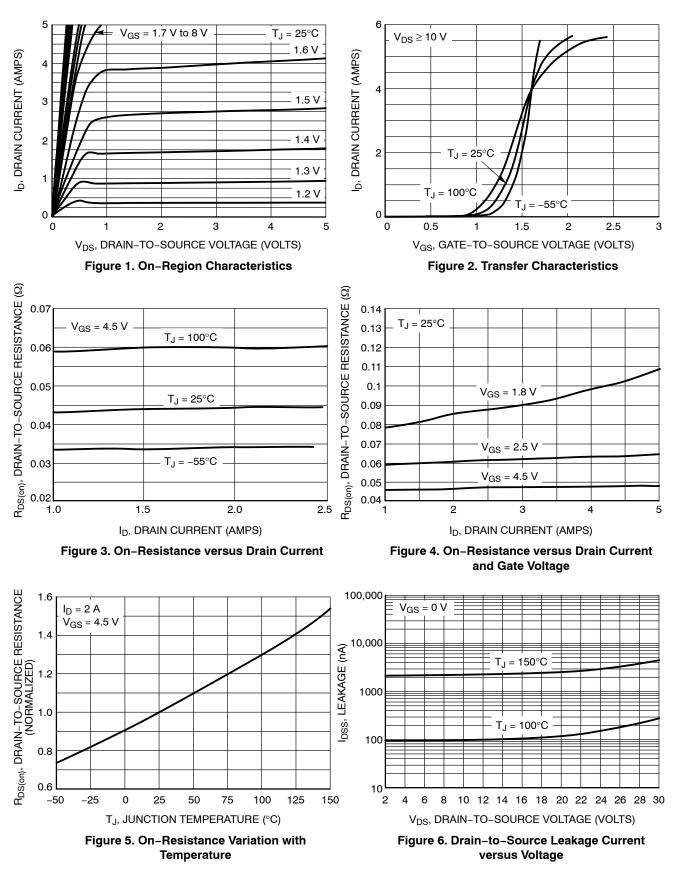
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 0.1 A		0.34	0.39	V
Forward Voltage		I _F = 1.0 A		0.47	0.53	
Maximum Instantaneous	I _R	V _R = 30 V		17	20	μΑ
Reverse Current		V _R = 20 V		3.0	8.0	
		V _R = 10 A		2.0	4.5	

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 85°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous Forward Voltage	V _F	I _F = 0.1 A		0.22	0.35	V
		I _F = 1.0 A		0.40	0.50	
Maximum Instantaneous	I _R	V _R = 30 V		0.22	2.5	mA
Reverse Current		V _R = 20 V		0.11	1.6	
		V _R = 10 V		0.06	1.2	

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 125°C unless otherwise noted)

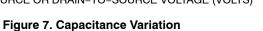
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous Forward Voltage	V _F	I _F = 0.1 A		0.2	0.29	V
		I _F = 1.0 A		0.4	0.47	
Maximum Instantaneous	I _R	V _R = 30 V		2.0	20	mA
Reverse Current		V _R = 20 V		1.1	10.9	
		V _R = 10 V		0.63	8.4	

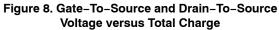

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

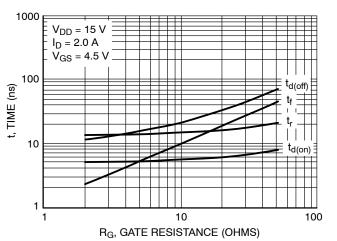
Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Capacitance	С	V _R = 5.0 V, f = 1.0 MHz		38		pF


7. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).

8. Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz cu.


9. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%. 10. Switching characteristics are independent of operating junction temperatures.




TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

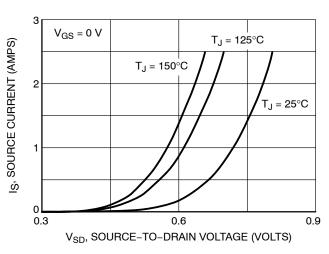
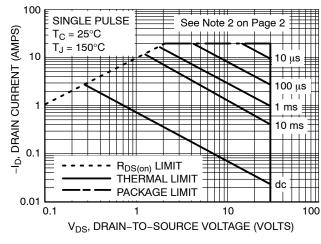
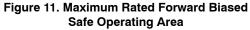
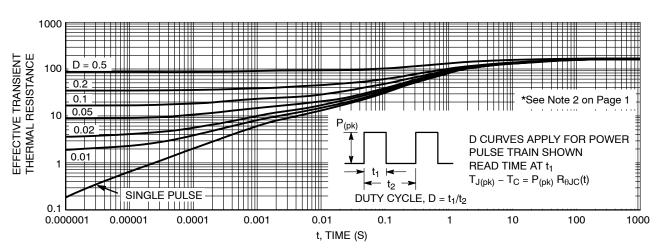





Figure 10. Diode Forward Voltage versus Current

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL SCHOTTKY PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

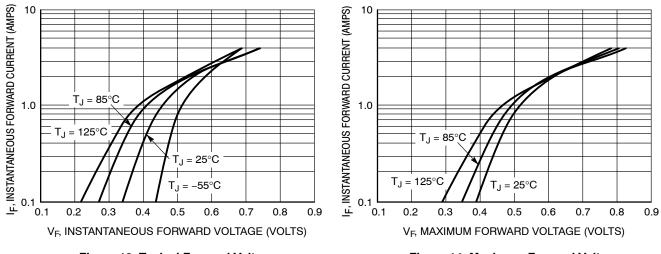


Figure 13. Typical Forward Voltage

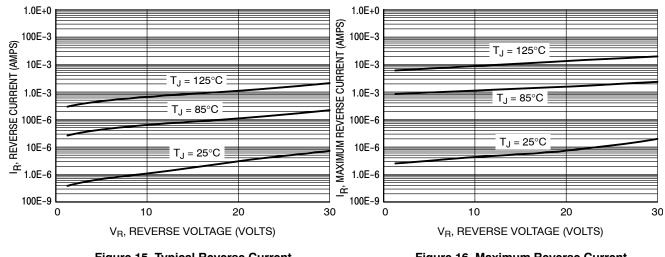
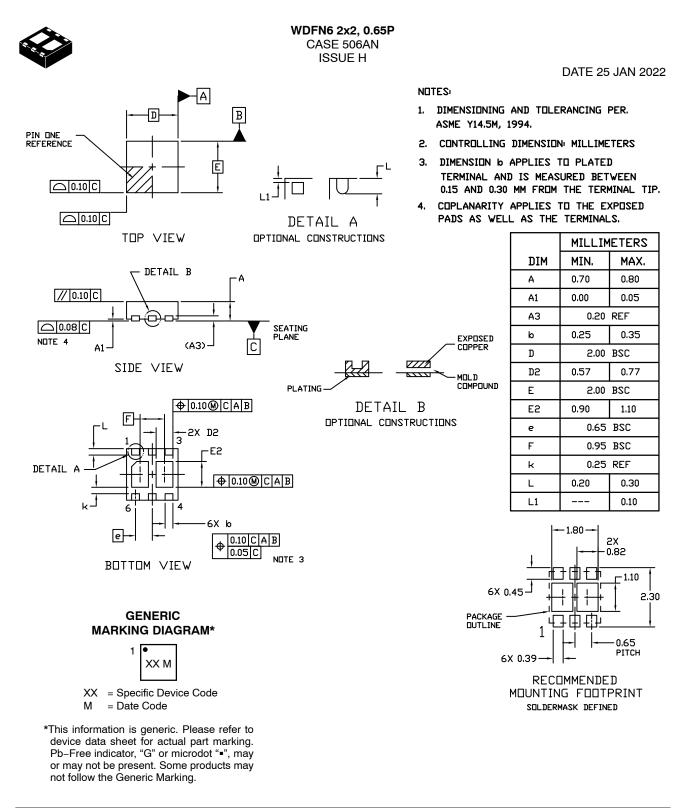


Figure 15. Typical Reverse Current

Figure 16. Maximum Reverse Current


ORDERING INFORMATION

Device	Package	Shipping [†]
NTLJF4156NT1G	WDFN6 (Pb-Free)	3000 / Tape & Reel
NTLJF4156NTAG	WDFN6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

 μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

onsemi

DOCUMENT NUMBER:	98AON20861D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	WDFN6 2x2, 0.65P		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative