MBR10H100CT

Switch-mode Power Rectifier 100 V, 10 A

Features and Benefits

- Low Forward Voltage: 0.61 V @ $125^{\circ} \mathrm{C}$
- Low Power Loss/High Efficiency
- High Surge Capacity
- $175^{\circ} \mathrm{C}$ Operating Junction Temperature
- 10 A Total (5.0 A Per Diode Leg)
- Guard-Ring for Stress Protection
- Pb -Free Package is Available

Applications

- Power Supply - Output Rectification
- Power Management
- Instrumentation

Mechanical Characteristics:

- Case: Epoxy, Molded
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: $260^{\circ} \mathrm{C}$ Max. for 10 Seconds
- Shipped 50 Units Per Plastic Tube

MAXIMUM RATINGS

Please See the Table on the Following Page

[^0]
MBR10H100CT

MAXIMUM RATINGS (Per Diode Leg)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$V_{\text {RRM }}$ $V_{\text {RWM }}$ V_{R}	100	V
Average Rectified Forward Current (Rated V_{R}) $\mathrm{T}_{\mathrm{C}}=168^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	5.0	A
Peak Repetitive Forward Current (Rated V_{R}, Square Wave, 20 kHz) $\mathrm{T}_{\mathrm{C}}=165^{\circ} \mathrm{C}$	IFRM	10	A
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	$\mathrm{I}_{\text {FSM }}$	180	A
Operating Junction Temperature (Note 1)	TJ	+175	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$
Voltage Rate of Change (Rated V_{R})	dv/dt	10,000	V/us
Controlled Avalanche Energy (see test conditions in Figures 10 and 11)	$\mathrm{W}_{\text {AVAL }}$	100	mJ
ESD Ratings: Machine Model = C Human Body Model $=3 B$		$\begin{gathered} >400 \\ >8000 \end{gathered}$	V

THERMAL CHARACTERISTICS

| Maximum Thermal Resistance - Junction-to-Case | | |
| ---: | ---: | :---: | :---: |
| - Junction-to-Ambient | $R_{\theta J C}$
 $R_{\theta J A}$ | 2.0 |
| 60 | | |

ELECTRICAL CHARACTERISTICS (Per Diode Leg)

Maximum Instantaneous Forward Voltage (Note 2)	V_{F}		V
$\left(\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$		0.73	
$\left(\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$		0.61	
$\left(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$		0.85	
$\left(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$		0.71	
Maximum Instantaneous Reverse Current (Note 2)	i_{R}		mA
(Rated DC Voltage, $\left.\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$		4.5	
(Rated DC Voltage, $\left.\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$		0.0035	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $d_{D} / d T_{J}<1 / R_{\theta J A}$.
2. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

MBR10H100CT

Figure 1. Typical Forward Voltage

V_{F}, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
Figure 2. Maximum Forward Voltage

Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

Figure 5. Current Derating

Figure 6. Forward Power Dissipation

Figure 7. Capacitance

Figure 8. Thermal Response Junction-to-Ambient

Figure 9. Thermal Response Junction-to-Case

MBR10H100CT

Figure 10. Test Circuit
The unclamped inductive switching circuit shown in Figure 10 was used to demonstrate the controlled avalanche capability of this device. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S_{1} is closed at t_{0} the current in the inductor I_{L} ramps up linearly; and energy is stored in the coil. At t_{1} the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at $\mathrm{BV}_{\text {DUT }}$ and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_{2}.

By solving the loop equation at the point in time when S_{1} is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in breakdown (from t_{1} to t_{2}) minus any losses due to finite component resistances. Assuming the component resistive

Figure 11. Current-Voltage Waveforms
elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S_{1} was closed, Equation (2).

EQUATION (1):

$$
\mathrm{W}_{\mathrm{AVAL}} \approx \frac{1}{2} \mathrm{LI}_{\mathrm{LPK}}^{2}\left(\frac{\mathrm{BV}_{\mathrm{DUT}}}{\mathrm{BV}_{\mathrm{DUT}}{ }^{\mathrm{E}} \mathrm{DD}}\right)
$$

EQUATION (2):

$\mathrm{W}_{\mathrm{AVAL}} \approx \frac{1}{2} \mathrm{LI}_{\mathrm{LPK}}^{2}$

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
2. CONTROLLING DIMENSION: INCHES
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
4. MAX WIDTH FOR F102 DEVICE $=1.35 \mathrm{MM}$

DIM	INCHES		MILLIMETERS	
	MIN.	MAX.	MIN.	MAX.
A	0.570	0.620	14.48	15.75
B	0.380	0.415	9.66	10.53
C	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
H	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	----	1.15	---
Z	----	0.080	---	2.04

STYLE 1:	
PIN 1.	BASE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR
STYLE 5:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE
4.	DRAIN
STYLE 9:	
PIN 1.	GATE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
4.	EMITTER
STYLE 6:	
PIN 1.	ANODE
2.	CATHODE
3.	ANODE
4.	CATHODE
STYLE 10:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
4.	SOURCE

STYLE 3:	
PIN 1.	CATHODE
2.	ANODE
3.	GATE
4.	ANODE
STYLE 7:	
PIN 1.	CATHODE
2.	ANODE
3.	CATHODE
4.	ANODE
STYLE 11:	
PIN 1.	DRAIN
2.	SOURCE
3.	GATE
4.	SOURCE

STYLE 4:
PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2
3. GATE
4. MAIN TERMINAL 2

STYLE $8:$
PIN 1. CATHODE
2. ANODE
3. EXTERNAL TRIP/DELAY
4. ANODE

STYLE 12:
PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2
3. GATE
3. GATE 4. NOT CONNECTED

| DOCUMENT NUMBER: | 98ASB42148B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-220 | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

