MJE18002G

Switch-mode

NPN Bipolar Power Transistor For Switching Power Supply Applications

The MJE18002G have an applications specific state-of-the-art die designed for use in 220 V line operated Switch-mode Power supplies and electronic light ballasts.

Features

- Improved Efficiency Due to Low Base Drive Requirements:
- High and Flat DC Current Gain h_{FE}
- Fast Switching
- No Coil Required in Base Circuit for Turn-Off (No Current Tail)
- Tight Parametric Distributions are Consistent Lot-to-Lot
- Standard TO-220
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	$\mathrm{V}_{\mathrm{CEO}}$	450	Vdc
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\mathrm{CES}}$	1000	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	9.0	Vdc
Collector Current	- Continuous	I_{C}	2.0
	- Peak (Note 1)	I_{CM}	5.0
Base Current \quad - Continuous	I_{B}	1.0	Adc
	- Peak (Note 1)	I_{BM}	2.0
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	50	W
Derate above $25^{\circ} \mathrm{C}$		0.4	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Operating and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{stg}}$	-65 to 150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}$	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
[^0]
ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

POWER TRANSISTOR
 2.0 AMPERES
 100 VOLTS - 50 WATTS

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week
$\mathrm{G}=\mathrm{Pb}-$ Free Package

ORDERING INFORMATION

Device	Package	Shipping
MJE18002G	TO-220 (Pb-Free)	50 Units / Rail

MJE18002G

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage ($\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~L}=25 \mathrm{mH}$)	$\mathrm{V}_{\text {CEO(sus) }}$	450	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=$ Rated $\mathrm{V}_{\text {CEO }}, \mathrm{I}_{\mathrm{B}}=0$)	ICEO	-	-	100	$\mu \mathrm{Adc}$
$\begin{array}{cc}\text { Collector Cutoff Current }\left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CES}}, \mathrm{V}_{\text {EB }}=0\right) & \mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \\ \left(\mathrm{V}_{\mathrm{CE}}=800 \mathrm{~V}, \mathrm{~V}_{\mathrm{EB}}=0\right) & \mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\end{array}$	ICES	-	-	$\begin{aligned} & 100 \\ & 500 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Emitter Cutoff Current $\left(V_{E B}=9.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {ebo }}$	-	-	100	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Base-Emitter Saturation Voltage ($\left.\mathrm{I}_{\mathrm{C}}=0.4 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{mAdc}\right)$ $\left(I_{C}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}\right)$		$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	$\begin{gathered} 0.825 \\ 0.92 \end{gathered}$	$\begin{gathered} 1.1 \\ 1.25 \end{gathered}$	Vdc
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \text { (IC } \left.=0.4 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{mAdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}\right) \end{aligned}$	$\begin{aligned} & @ T_{C}=125^{\circ} \mathrm{C} \\ & @ T_{C}=125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$	- - -	$\begin{gathered} 0.2 \\ 0.2 \\ 0.25 \\ 0.3 \\ \hline \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.6 \\ & \hline \end{aligned}$	Vdc
$\begin{aligned} & \hline \text { DC Current Gain (} \mathrm{I}_{\mathrm{C}}\left.=0.2 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \\ &\left(\mathrm{I}_{\mathrm{C}}=0.4 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ &\left(\mathrm{I}_{\mathrm{C}}\right.\left.=1.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ &\left(\mathrm{I}_{\mathrm{C}}\right.\left.=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \end{aligned}$	@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{h}_{\text {FE }}$	14 - 11 11 6.0 5.0 10	$\begin{aligned} & - \\ & 27 \\ & 17 \\ & 20 \\ & 8.0 \\ & 8.0 \\ & 20 \end{aligned}$	34 - - - -	-

DYNAMIC CHARACTERISTICS

Current Gain Bandwidth$\left(\mathrm{I}_{\mathrm{C}}=0.2 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$				f_{T}	-	13	-	MHz
Output Capacitance$\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$				$\mathrm{C}_{\text {ob }}$	-	35	60	pF
Input Capacitance$\left(\mathrm{V}_{\mathrm{EB}}=8.0 \mathrm{~V}\right)$				$\mathrm{C}_{\text {ib }}$	-	400	600	pF
Dynamic Saturation: determined $1.0 \mu \mathrm{~s}$ and $3.0 \mu \mathrm{~s}$ after rising $\mathrm{I}_{\mathrm{B} 1}$ reach 0.9 final $\mathrm{I}_{\mathrm{B} 1}$ (see Figure 18)	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.4 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \end{aligned}$	$1.0 \mu \mathrm{~s}$	@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE} \text { (dsat) }}$	-	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$	-	Vdc
		$3.0 \mu \mathrm{~s}$	@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		-	$\begin{aligned} & 1.5 \\ & 3.8 \end{aligned}$	-	
	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \end{aligned}$	$1.0 \mu \mathrm{~s}$	@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		-	8.0 14	-	
		$3.0 \mu \mathrm{~s}$	@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		-	2.0 7.0	-	

2. Proper strike and creepage distance must be provided.

MJE18002G

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

SWITCHING CHARACTERISTICS: Resistive Load (D.C. $\leq 10 \%$, Pulse Width $=20 \mu \mathrm{~s}$)

Turn-On Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.4 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{B} 1}=40 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{B} 2}=0.2 \mathrm{Adc} \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \end{aligned}$	@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {on }}$	-	$\begin{aligned} & 200 \\ & 130 \end{aligned}$	300	ns
Turn-Off Time		@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {off }}$	-	1.2 1.5	2.5	$\mu \mathrm{S}$
Turn-On Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{B} 2}=0.5 \mathrm{Adc} \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \end{aligned}$	@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {on }}$	-	$\begin{aligned} & 85 \\ & 95 \end{aligned}$	150	ns
Turn-Off Time		@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {off }}$	-	1.7 2.1	2.5	$\mu \mathrm{s}$

SWITCHING CHARACTERISTICS: Inductive Load ($\mathrm{V}_{\text {clamp }}=300 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~L}=200 \mu \mathrm{H}$)

Fall Time	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=0.4 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=40 \mathrm{mAdc}, \\ \mathrm{I}_{\mathrm{B} 2}=0.2 \mathrm{Adc} \end{gathered}$	@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{fi}	-	$\begin{aligned} & 125 \\ & 120 \end{aligned}$	$\begin{gathered} 200 \\ - \end{gathered}$	ns
Storage Time		@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {si }}$	-	$\begin{aligned} & 0.7 \\ & 0.8 \end{aligned}$	1.25 -	$\mu \mathrm{s}$
Crossover Time		@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{c}	-	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	200 -	ns
Fall Time	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{Adc}, \\ \mathrm{I}_{\mathrm{B} 2}=0.5 \mathrm{Adc} \end{gathered}$	$@ \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{fi}	-	$\begin{aligned} & 110 \\ & 120 \end{aligned}$	175	ns
Storage Time		@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {si }}$	-	$\begin{gathered} \hline 1.7 \\ 2.25 \end{gathered}$	2.75 -	$\mu \mathrm{s}$
Crossover Time		@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{c}	-	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	300 -	ns
Fall Time	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=0.4 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=50 \mathrm{mAdc}, \\ \mathrm{I}_{\mathrm{B} 2}=50 \mathrm{mAdc} \end{gathered}$	$@ \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{fi}	-	$\begin{aligned} & 140 \\ & 185 \end{aligned}$	200	ns
Storage Time		$@ \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{si}	-	$\begin{aligned} & 2.2 \\ & 2.5 \end{aligned}$	3.0 -	$\mu \mathrm{s}$
Crossover Time		@ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	t_{c}	-	$\begin{aligned} & 140 \\ & 220 \end{aligned}$	250 -	ns

MJE18002G

TYPICAL STATIC CHARACTERISTICS

Figure 1. DC Current Gain @ 1 Volt

Figure 2. DC Current Gain @ 5 Volts

Figure 3. Collector Saturation Region

Figure 4. Collector-Emitter Saturation Voltage

Figure 5. Base-Emitter Saturation Region

Figure 6. Capacitance

MJE18002G

TYPICAL SWITCHING CHARACTERISTICS

($\mathrm{I}_{\mathrm{B} 2}=\mathrm{I}_{\mathrm{C}} / 2$ for all switching)

Figure 7. Resistive Switching, t_{on}

Figure 8. Resistive Switching, $\mathrm{t}_{\text {off }}$

Figure 9. Inductive Storage Time, $\mathbf{t}_{\mathbf{s i}}$

Figure 10. Inductive Storage Time

Figure 12. Inductive Switching, t_{c} and $\mathrm{t}_{\mathrm{f},}, \mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=10$

MJE18002G

TYPICAL SWITCHING CHARACTERISTICS

($\mathrm{I}_{\mathrm{B} 2}=\mathrm{I}_{\mathrm{C}} / \mathbf{2}$ for all switching)

Figure 13. Inductive Fall Time

Figure 14. Inductive Crossover Time

GUARANTEED SAFE OPERATING AREA INFORMATION

Figure 15. Forward Bias Safe Operating Area

Figure 17. Forward Bias Power Derating

Figure 16. Reverse Bias Switching Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{J}}(\mathrm{pk})$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. $\mathrm{T}_{\mathrm{J}}(\mathrm{pk})$ may be calculated from the data in Figures 20. At any case temperatures, thermal limitations will reduce the power that can be handled to values less the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base to emitter junction reverse biased. The safe level is specified as a reverse biased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

Figure 18. Dynamic Saturation Voltage Measurements

Figure 19. Inductive Switching Measurements

Table 1. Inductive Load Switching Drive Circuit
TYPICAL THERMAL RESPONSE

Figure 20. Typical Thermal Response ($\mathbf{Z}_{\text {ӨJc }}(\mathbf{t})$) for MJE18002

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
2. CONTROLLING DIMENSION: INCHES
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
4. MAX WIDTH FOR F102 DEVICE $=1.35 \mathrm{MM}$

DIM	INCHES		MILLIMETERS	
	MIN.	MAX.	MIN.	MAX.
A	0.570	0.620	14.48	15.75
B	0.380	0.415	9.66	10.53
C	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
H	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	----	1.15	---
Z	----	0.080	---	2.04

STYLE 1:	
PIN 1.	BASE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR
STYLE 5:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE
4.	DRAIN
STYLE 9:	
PIN 1.	GATE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
4.	EMITTER
STYLE 6:	
PIN 1.	ANODE
2.	CATHODE
3.	ANODE
4.	CATHODE
STYLE 10:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
4.	SOURCE

STYLE 3:	
PIN 1.	CATHODE
2.	ANODE
3.	GATE
4.	ANODE
STYLE 7:	
PIN 1.	CATHODE
2.	ANODE
3.	CATHODE
4.	ANODE
STYLE 11:	
PIN 1.	DRAIN
2.	SOURCE
3.	GATE
4.	SOURCE

STYLE 4:
PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2
3. GATE
4. MAIN TERMINAL 2

STYLE $8:$
PIN 1. CATHODE
2. ANODE
3. EXTERNAL TRIP/DELAY
4. ANODE

STYLE 12:
PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2
3. GATE
3. GATE 4. NOT CONNECTED

| DOCUMENT NUMBER: | 98ASB42148B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-220 | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

