onsemi

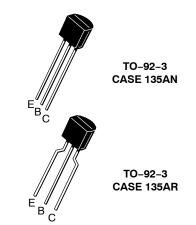
NPN General-Purpose Amplifier

2N5551

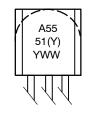
Description

This device is designed for general-purpose high-voltage amplifiers and gas discharge display drivers.

Features


• These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ABSOLUTE MAXIMUM RATINGS (Note 1)


Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	160	V
V _{CBO}	Collector-Base Voltage	180	V
V _{EBO}	Emitter-Base Voltage	6	V
۱ _C	Collector Current – Continuous	600	mA
T _J , T _{STG}	Operating and Storage Temperature (Note 2)	–55 to + 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
- These ratings are based on a maximum junction temperature of 150°C. These are steady-state limits. onsemi should be consulted on applications involving pulsed or low-duty cycle operations.

MARKING DIAGRAM

A = Assembly Location 5551(Y) = Specific Device Code Y = Year WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

2N5551

THERMAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Note 3)

Symbol	Characteristic	Мах	Unit	
PD	Total Device Dissipation	625	mW	
	Derate Above 25°C	5.0	mW/°C	
$R_{ hetaJC}$	Thermal Resistance, Junction to Case	83.3	°C/W	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	200	°C/W	

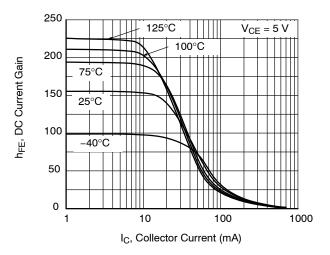
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Note 4)

Symbol	Parameter	Test Conditions	Min	Max	Unit
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = 1.0 mA, I _B = 0	160		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, \ I_{E} = 0$	180		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E = 10 μA, I _C = 0	6.0		V
I _{CBO}	Collector Cut-Off Current	$V_{CB} = 120 \text{ V}, \text{ I}_{E} = 0$		50	nA
		V_{CB} = 120 V, I_{E} = 0 V, T_{A} = 100 $^{\circ}C$		50	μΑ
I _{EBO}	Emitter Cut-Off Current	$V_{EB} = 4.0 \text{ V}, \text{ I}_{C} = 0$		50	nA

ON CHARACTERISTICS

h _{FE}	DC Current Gain	I _C = 1.0 mA, V _{CE} = 5.0 V	80		
		I _C = 10 mA, V _{CE} = 5.0 V	80	250	
		I _C = 10 mA, V _{CE} = 5.0 V (for 2N5551YBU, 2N5551YTA)	180	240	
		I _C = 50 mA, V _{CE} = 5.0 V	30		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 10 mA, I _B = 1.0 mA		0.15	V
		I _C = 50 mA, I _B = 5.0 mA		0.20	V
V _{BE(sat)}	Base-Emitter On Voltage	I _C = 10 mA, I _B = 1.0 mA		1.0	V
		I _C = 50 mA, I _B = 5.0 mA		1.0	V

SMALL-SIGNAL CHARACTERISTICS


f _T	Current Gain Bandwidth Product	I_{C} = 10 mA, V_{CE} = 10 V, f = 100 MHz	100		MHz
C _{obo}	Output Capacitance	V_{CB} = 10 V, I _E = 0, f = 1.0 MHz		6.0	pF
C _{ibo}	Input Capacitance	V_{BE} = 0.5 V, I _C = 0, f = 1.0 MHz		20	pF
H _{fe}	Small-Signal Current Gain	$I_{\rm C}$ = 1.0 mA, $V_{\rm CE}$ = 10 V, f = 1.0 kHz	50	250	
NF	Noise Figure	I_{C} = 250 μA, V _{CE} = 5.0 V, R _S = 1.0 kΩ, f = 10 Hz to 15.7 kHz		8.0	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. PCB board size $FR-4.76 \times 114 \times 0.6 T \text{ mm}^3$ (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

4. Pulse test: pulse width \leq 300 μ s, duty cycle \leq 2.0%.

2N5551

TYPICAL PERFORMANCE CHARACTERISTICS

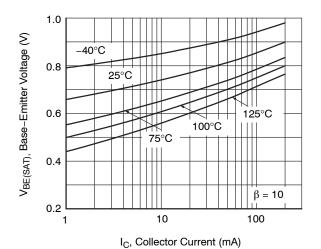
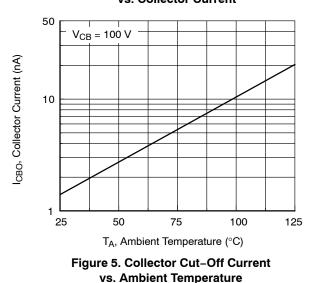



Figure 3. Base–Emitter Saturation Voltage vs. Collector Current

β = 10 V_{CE(SAT)}, Collector Emitter Voltage (V) 10 1 125°C 100°C Ν 0.1 C 75 25°C П -40°C 0.01 10 100 1

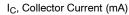


Figure 2. Collector– Emitter Saturation Voltage vs. Collector Current

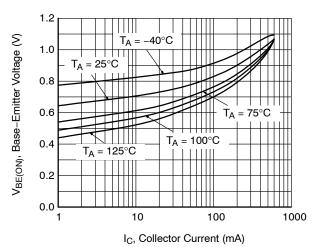
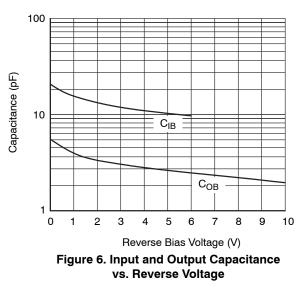



Figure 4. Base–Emitter On Voltage vs. Collector Current

2N5551

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

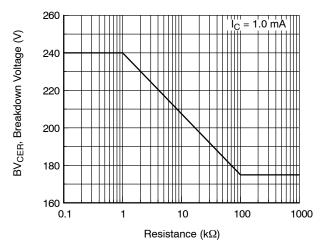


Figure 7. Collector–Emitter Breakdown Voltage with Resistance between Emitter–Base

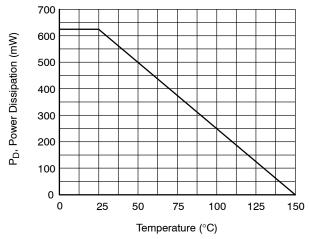
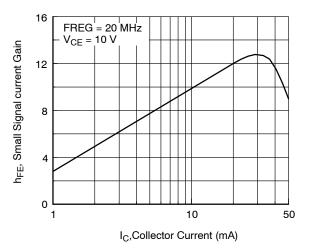
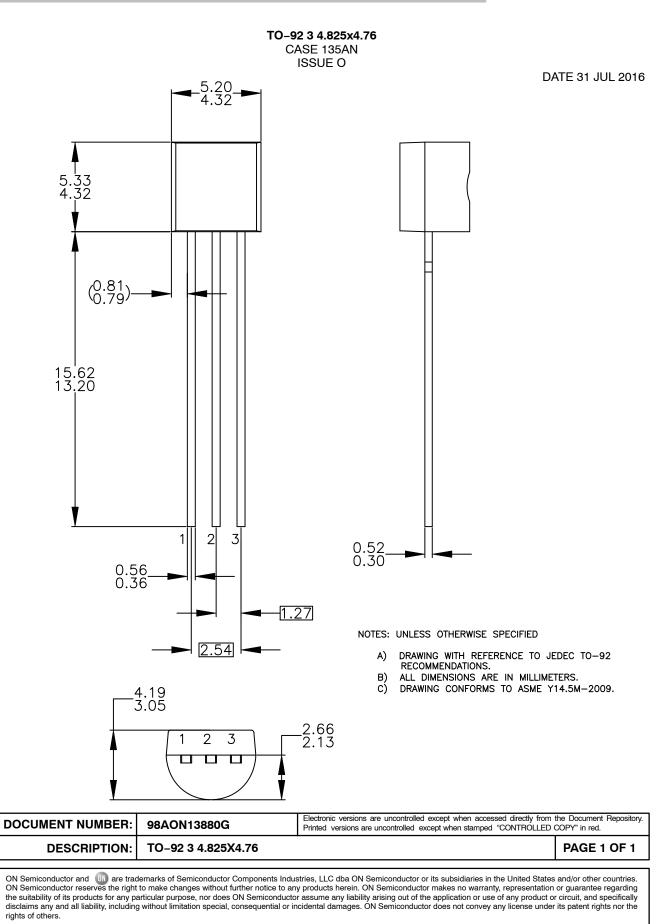


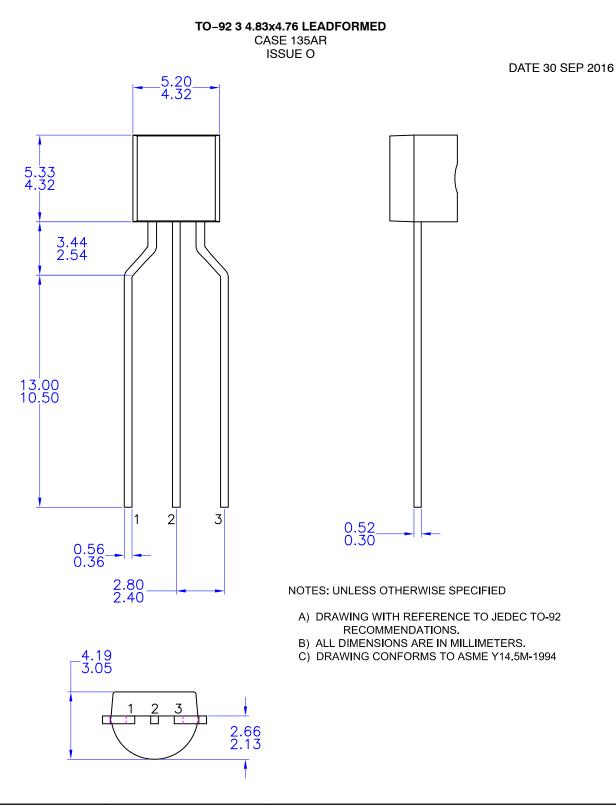
Figure 9. Power Dissipation vs. Ambient Temperature




Figure 8. Small Signal Current Gain vs. Collector Current

ORDERING INFORMATION (Note 5)

Part Number	Top Mark	Package	Shipping [†]
2N5551TA	5551	TO-92-3 (Pb-Free)	2,000 / Ammo Pack
2N5551TFR	5551	TO-92-3 (Pb-Free)	2,000 / Tape & Reel
2N5551TF	5551	TO-92-3 (Pb-Free)	2,000 / Tape & Reel
2N5551BU	5551	TO-92-3 (Pb-Free)	10,000 / Bulk Bag
2N5551YBU	5551Y	TO-92-3 (Pb-Free)	10,000 / Bulk Bag
2N5551YTA	5551Y	TO-92-3 (Pb-Free)	2,000 / Ammo Pack


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 5. Suffix "-Y" means h_{FE} 180~240 in 2N5551 (Test condition: $I_C = 10$ mA, $V_{CE} = 5.0$ V)

© Semiconductor Components Industries, LLC, 2019

DOCUMENT NUMBER:	98AON13879G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TO-92 3 4.83X4.76 LEADFORMED		PAGE 1 OF 1		
ON Semiconductor and M are trademarks of Semiconductor Components Industries. LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.					

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative