MC74HC390A

Dual 4-Stage Binary Ripple Counter with ÷ 2 and ÷ 5 Sections

High–Performance Silicon–Gate CMOS

The MC74HC390A is identical in pinout to the LS390. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of two independent 4-bit counters, each composed of a divide-by-two and a divide-by-five section. The divide-by-two and divide-by-five counters have separate clock inputs, and can be cascaded to implement various combinations of $\div 2$ and/or $\div 5$ up to a $\div 100$ counter.

Flip-flops internal to the counters are triggered by high-to-low transitions of the clock input. A separate, asynchronous reset is provided for each 4-bit counter. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or strobes except when gated with the Clock of the HC390A.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 µA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No 7 A
- Chip Complexity: 244 FETs or 61 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

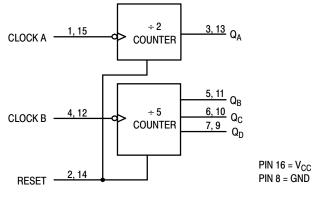
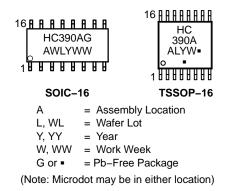


Figure 1. Logic Diagram

ON Semiconductor®


http://onsemi.com

PIN ASSIGNMENT

			_
CLOCK A _a [1•	16	Vcc
RESET a [2	15	
Q _{Aa} [3	14	RESET b
CLOCK B _a [4	13	Q _{Ab}
Q _{Ba} [5	12	CLOCK Bb
Q _{Ca} [6	11	Q _{Bb}
Q _{Da} [7	10] Q _{Cb}
GND [8	9	

MARKING DIAGRAMS

FUNCTION TABLE							
Clo	ock						
Α	В	Reset	Action				
Х	Х	Н	Reset ÷ 2 and ÷ 5				
~	Х	L	Increment ÷ 2				
Х	~	L	Increment ÷ 5				

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
Vout	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V_{CC} and GND Pins	±50	mA
PD	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C

TSSOP Package: -6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	nbol Parameter		Min	Max	Unit
V _{CC}	CC DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	/in, Vout DC Input Voltage, Output Voltage (Referenced to GND)		0	V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2$ (Figure 1) $V_{CC} = 2$ $V_{CC} = 2$ $V_{CC} = 2$ $V_{CC} = 2$	3.0 V 4.5 V	0 0 0 0	1000 600 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu			
Symbol	Parameter	Test Conditions	V _{CC} V	–55 to 25°C	≤ 85°C	≤125°C	Unit
V _{IH}	Minimum High–Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V \\ I_{out} \ \leq \ 20 \ \mu A \end{array}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low–Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
V _{OH}	Minimum High–Level Output Voltage	$ \begin{array}{l} V_{in} = V_{IH} \text{ or } V_{IL} \\ I_{out} \leq 20 \; \mu A \end{array} $	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$\begin{array}{ll} V_{in} = V_{IH} \text{ or } V_{IL} & \begin{array}{l} I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 4.0 \text{ mA} \\ I_{out} \leq 5.2 \text{ mA} \end{array}$	4.5	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
V _{OL}	Maximum Low–Level Output Voltage	$\begin{array}{l} V_{in} = V_{IH} \text{ or } V_{IL} \\ I_{out} \leq 20 \; \mu A \end{array}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$ \begin{aligned} V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} & \begin{array}{l} I_{\text{out}} & \leq 2.4 \text{ mA} \\ I_{\text{out}} & \leq 4.0 \text{ mA} \\ I_{\text{out}} & \leq 5.2 \text{ mA} \end{aligned} $	4.5	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	

MC74HC390A

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) (continued)

				Guaranteed Limit			
Symbol	Parameter	Test Conditions	V _{CC} V	–55 to 25°C	≤ 85 ° C	≤125°C	Unit
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
ICC	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC} \text{ or } GND$ $I_{out} = 0 \ \mu A$	6.0	4	40	160	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

			Gu			
Symbol	Parameter	v _{cc} v	–55 to 25°C	≤ 85°C	≤125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle)	2.0	10	9	8	MHz
	(Figures 1 and 3)	3.0	15	14	12	
		4.5	30	28	25	
		6.0	50	45	40	
t _{PLH} ,	Maximum Propagation Delay, Clock A to QA	2.0	70	80	90	ns
t _{PHL}	(Figures 1 and 3)	3.0	40	45	50	
		4.5	24	30	36	
		6.0	20	26	31	
t _{PLH} ,	Maximum Propagation Delay, Clock A to QC	2.0	200	250	300	ns
t _{PHL}	(QA connected to Clock B)	3.0	160	185	210	
	(Figures 1 and 3)	4.5	58	65	70	
		6.0	49	62	68	
t _{PLH} ,	Maximum Propagation Delay, Clock B to QB	2.0	70	80	90	ns
t _{PHL}	(Figures 1 and 3)	3.0	40	45	50	
		4.5	26	33	39	
		6.0	22	28	33	
t _{PLH} ,	Maximum Propagation Delay, Clock B to QC	2.0	90	105	180	ns
t _{PHL}	(Figures 1 and 3)	3.0	56	70	100	
		4.5	37	46	56	
		6.0	31	39	48	
t _{PLH} ,	Maximum Propagation Delay, Clock B to QD	2.0	70	80	90	ns
t _{PHL}	(Figures 1 and 3)	3.0	40	45	50	
		4.5	26	33	39	
		6.0	22	28	33	
t _{PHL}	Maximum Propagation Delay, Reset to any Q	2.0	80	95	110	ns
	(Figures 2 and 3)	3.0	48	65	75	
		4.5	30	38	44	
		6.0	26	33	39	
t _{TLH} ,	Maximum Output Transition Time, Any Output	2.0	75	95	110	ns
t _{THL}	(Figures 1 and 3)	3.0	27	32	36	
		4.5	15	19	22	
		6.0	13	15	19	
Cin	Maximum Input Capacitance	_	10	10	10	pF
			Typical @ 25°C, V _{CC} = 5.0 V		_C = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Counter)*			35		pF

* Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING REQUIREMENTS (Input $t_r = t_f = 6$ ns)

			Gu	aranteed Li	mit	
Symbol	Parameter	v _{cc} v	–55 to 25°C	≤85°C	≤125°C	Unit
t _{rec}	Minimum Recovery Time, Reset Inactive to Clock A or Clock B (Figure 3)	2.0 3.0 4.5 6.0	25 15 10 9	30 20 13 11	40 30 15 13	ns
t _w	Minimum Pulse Width, Clock A, Clock B (Figure 2)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 15	110 36 22 19	ns
t _w	Minimum Pulse Width, Reset (Figure 3)	2.0 3.0 4.5 6.0	75 27 20 18	95 32 24 22	110 36 30 28	ns
t _f , t _f	Maximum Input Rise and Fall Times (Figure 2)	2.0 3.0 4.5 6.0	1000 800 500 400	1000 800 500 400	1000 800 500 400	ns

PIN DESCRIPTIONS

SWITCHING WAVEFORMS

INPUTS

Clock A (Pins 1, 15) and Clock B (Pins 4, 15)

OUTPUTS

Q_A (Pins 3, 13)

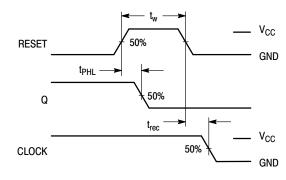
Output of the \div 2 counter.

Q_B, Q_C, Q_D (Pins 5, 6, 7, 9, 10, 11)

CONTROL INPUTS

Reset (Pins 2, 14)

Asynchronous reset. A high at the Reset input prevents counting, resets the internal flip-flops, and forces Q_A through Q_D low.


Clock A is the clock input to the \div 2 counter; Clock B is the clock input to the \div 5 counter. The internal flip-flops are

toggled by high-to-low transitions of the clock input.

Outputs of the \div 5 counter. Q_D is the most significant bit. Q_A is the least significant bit when the counter is connected for BCD output as in Figure 5. Q_B is the least significant bit when the counter is operating in the bi–quinary mode as in Figure 6.

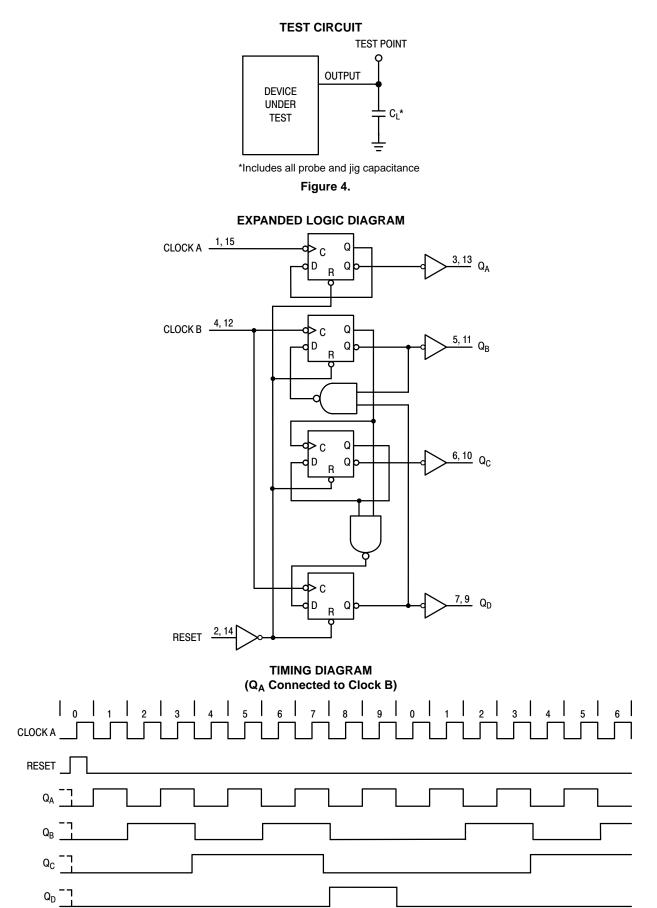


Figure 2.

MC74HC390A

APPLICATIONS INFORMATION

Each half of the MC54/74HC390A has independent $\div 2$ and $\div 5$ sections (except for the Reset function). The $\div 2$ and $\div 5$ counters can be connected to give BCD or bi–quinary (2–5) count sequences. If Output Q_A is connected to the Clock B input (Figure 4), a decade divider with BCD output is obtained. The function table for the BCD count sequence is given in Table 1.

Table 1. BCD Count Sequence*

	Output					
Count	QD	Q _C	Q _B	Q _A		
0	L	L	L	L		
1	L	L	L	Н		
2	L	L	Н	L		
3	L	L	Н	Н		
4	L	Н	L	L		
5	L	н	L	Н		
6	L	н	н	L		
7	L	н	н	Н		
8	Н	L	L	L		
9	Н	L	L	Н		

*QA connected to Clock B input.

To obtain a bi–quinary count sequence, the input signals connected to the Clock B input, and output Q_D is connected to the Clock A input (Figure 6). Q_A provides a 50% duty cycle output. The bi–quinary count sequence function table is given in Table 2.

	Output					
Count	Q _A	QD	Q _C	Q _B		
0	L	L	L	L		
1	L	L	L	н		
2	L	L	н	L		
3	L	L	н	н		
4	L	Н	L	L		
8	н	L	L	L		
9	н	L	L	н		
10	Н	L	Н	L		
11	Н	L	Н	Н		
12	Н	Н	L	L		

** Q_D connected to Clock A input.

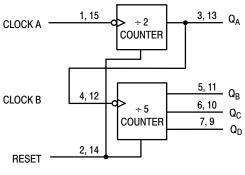


Figure 5. BCD Count

CONNECTION DIAGRAMS

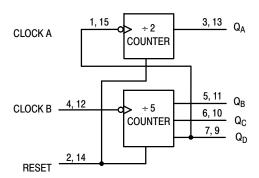
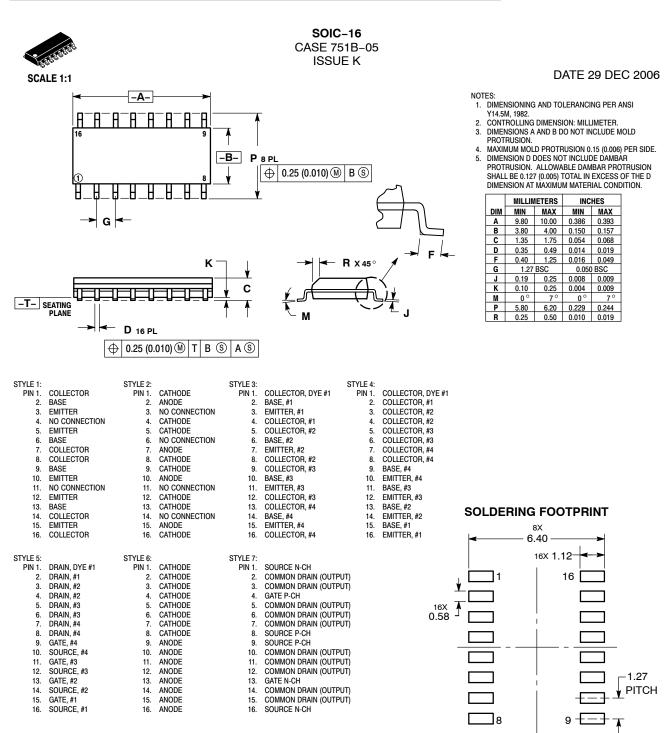


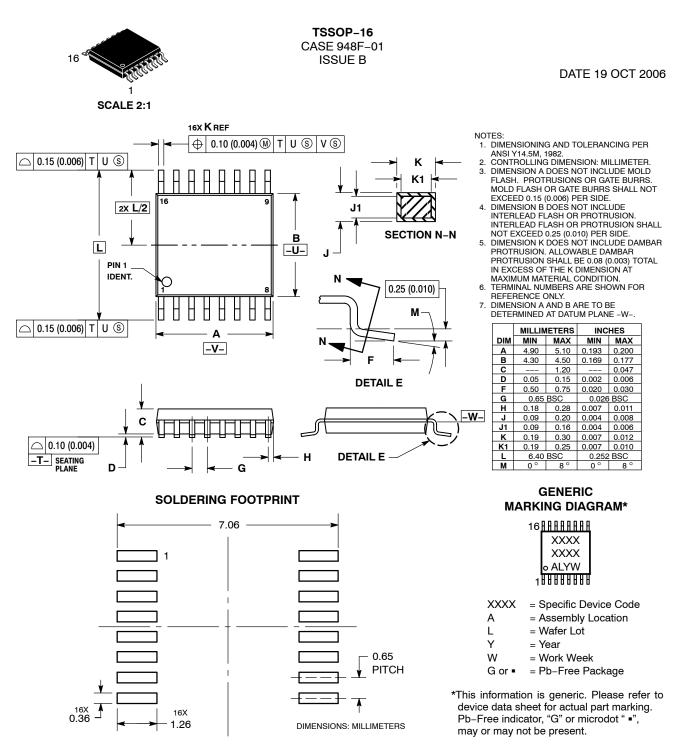
Figure 6. Bi-Quinary Count


ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC390ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC390ADR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC74HC390ADTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV74HC390ADR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16		PAGE 1 OF 1	
ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding				

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		
ON Semiconductor and 🔟 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.					

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative