4-Channel Differential 1:2
 Mux/Demux Switch for
 PCI Express Gen2

The NCN2411 is a 4-Channel differential SPDT switch designed to route PCI Express Gen2 signals. When used in a PCI Express application, the switch can handle up to two PCIe lanes. Due to the ultra-low ON -state capacitance (2 pF typ) and resistance ($7.5 \Omega \mathrm{typ}$), this switch is ideal for switching high frequency signals up to a signal bit rate (BR) of 5 Gbps . This switch pinout is designed to be used in BTX form factor desktop PCs and is available in a space-saving 3.5x9x0.75 mm WQFN42 package.

Features

- V_{DD} Power Supply from 1.5 V to 2.0 V
- 4 Differential Channels 2:1 MUX/DEMUX
- Compatible with PCIe 2.0
- Data Rate: Supports 5 Gbps
- Low Crosstalk: -30 dB @ 3 GHz
- Low Bit-to-Bit Skew: 5 ps
- Low R_{ON} Resistance: 13Ω max
- Low CON Capacitance: 2 pF
- Low Supply Current: $200 \mu \mathrm{~A}$
- Insertion Loss: $-2 \mathrm{~dB} @ 3 \mathrm{GHz}$
- Space Saving, Small WQFN-42 Package
- This is a $\mathrm{Pb}-$ Free Device

Typical Applications

- Notebook Computer
- Desktop computer
- Server/Storage Area Network

Figure 1. Application Schematic

NCN2411

Figure 2. NCN2411 Functional Block Diagram
(Top View)

TRUTH TABLE

Function	SEL
A_{N} to B_{N}	L
A_{N} to C_{N}	H

Figure 3. Pin Description (Top View)

PIN FUNCTION AND DESCRIPTION

Pin	Pin Name	Description
2, 3	A0+, A0-	Signal I/O, Channel 0, Port A
6, 7	A1+, A1-	Signal I/0, Channel 1, Port A
11, 12	A2+, A2-	Signal I/0, Channel 2, Port A
15, 16	A3+, A3-	Signal I/O, Channel 3, Port A
38, 37	B0+, B0-	Signal I/O, Channel 0, Port B
36, 35	B1+, B1-	Signal I/0, Channel 1, Port B
29, 28	B2+, B2-	Signal I/0, Channel 2, Port B
27, 26	B3+, B3-	Signal I/0, Channel 3, Port B
34, 33	C0+, $\mathrm{CO}-$	Signal I/O, Channel 0, Port C
32, 31	C1+, C1-	Signal I/0, Channel 1, Port C
25, 24	C2+, C2-	Signal I/0, Channel 2, Port C
23, 22	C3+, C3-	Signal I/O, Channel 3, Port C
9	SEL	Operational Mode Select (When SEL $=0: \mathrm{A} \rightarrow \mathrm{B}$, When $\mathrm{SEL}=1: \mathrm{A} \rightarrow \mathrm{C}$) Do not float this pin.
$\begin{gathered} 5,8,13,18 \\ 20,30,40,42 \end{gathered}$	VDD	DC Supply: 1.5 V to 2.0 V
$\begin{gathered} 1,4,10,14 \\ 17,19,21 \\ 39,41 \end{gathered}$	GND	Power Ground
Exposed Pad	-	The exposed pad on the backside of package is internally connected to GND. Externally the pad should also be user-connected to GND.

MAXIMUM RATINGS

Parameter	Symbol	Rating	Units
Power Supply Voltage	$V_{D D}$	-0.5 to 2.5	$V_{D C}$
Input/Output Voltage Range of the Switch ($\mathrm{A}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}}, \mathrm{C}_{\mathrm{N}}$)	$\mathrm{V}_{\text {IS }}$	-0.5 to V_{DD}	$V_{\text {DC }}$
Selection Pin Voltages	$\mathrm{V}_{\text {SEL }}$	-0.5 to $V_{\text {DD }}$	V_{DC}
Continuous Current Through One Switch	I_{cc}	± 120	mA
Maximum Junction Temperature (Note 1)	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	$\mathrm{T}_{\text {A }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\theta \mathrm{JA}}$	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Latch-up Current (Note 2)	ILU	± 100	mA
Human Body Model (HBM) ESD Rating (Note 3)	ESD HBM	7000	V
Machine Model (MM) ESD Rating (Note 3)	ESD MM	400	V
Moisture Sensitivity (Note 4)	MSL	Level 1	-

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{j}\right)$ is not exceeded.
2. Latch up Current Maximum Rating: $\pm 100 \mathrm{~mA}$ per JEDEC standard: JESD78.
3. This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ± 7.0 kV per JEDEC standard: JESD22-A114 for all pins.
Machine Model (MM) ± 400 V per JEDEC standard: JESD22-A115 for all pins.
4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$)

Symbol	Pins	Parameters	Conditions (Note 5)	Min.	Typ (Note 6)	Max.	Units

POWER SUPPLY

$V_{D D}$	$V_{D D}, G N D$	Supply Voltage Range	With respect to $G N D$	1.5	1.8	2.0	V
I_{DD}	$\mathrm{V}_{\mathrm{DD}}, G N D$	Quiescent Supply Current	$\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SEL}}=\mathrm{GND}$ or V_{DD}		200	300	$\mu \mathrm{~A}$

DATA SWITCH PERFORMANCE

$\mathrm{V}_{\text {IS }}$	$\mathrm{A}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}}, \mathrm{C}_{\mathrm{N}}$	Data Input/Output Voltage Range		0		1.2	V
Ron	B_{N}	On Resistance (B_{N})	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } 1.2 \mathrm{~V}, \\ \mathrm{I}_{I S}=15 \mathrm{~mA} \end{gathered}$		7.5	13	Ω
RoN	C_{N}	On Resistance (C_{N})	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V} \text { to } 1.2 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{IS}}=15 \mathrm{~mA} \end{gathered}$		8.0	13	Ω
$\mathrm{R}_{\text {ON(flat) }}$	B_{N}	On Resistance Flatness	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=0 \mathrm{~V} \text { to } 1.2 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{IS}}=15 \mathrm{~mA}(\text { Note } 7) \end{gathered}$		0.1	1.24	Ω
Ron(flat)	C_{N}	On Resistance Flatness	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=0 \mathrm{~V} \text { to } 1.2 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{IS}}=15 \mathrm{~mA}(\text { Note } 7) \end{gathered}$		0.1	1.24	Ω
$\Delta \mathrm{R}_{\text {ON }}$	B_{N}	On Resistance Matching (B_{N})	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IS }}=0 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{IS}}=15 \mathrm{~mA}(\text { Note } 7) \end{gathered}$			0.35	Ω
$\Delta \mathrm{R}_{\text {ON }}$	C_{N}	On Resistance Matching $\left(\mathrm{C}_{\mathrm{N}}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{IS}}=15 \mathrm{~mA}(\text { Note } 7) \end{aligned}$			0.35	Ω
$\mathrm{Con}^{\text {N }}$	A_{N} to B_{N}, A_{N} to C_{N}	On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$, Switch On, Open Output		2.0		pF
$\mathrm{C}_{\text {OFF }}$	A_{N} to B_{N}, A_{N} to C_{N}	Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$, Switch Off		1.5		pF
Ion	A_{N} to B_{N}, A_{N} to C_{N}	On Leakage Current	$\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{AN}}=0 \mathrm{~V}, 1.2 \mathrm{~V}$, Switch On to $\mathrm{B}_{\mathrm{N}} / \mathrm{C}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}} / \mathrm{C}_{\mathrm{N}}$ pins are unconnected	-1		+1	$\mu \mathrm{A}$
loff	A_{N} to B_{N}, A_{N} to C_{N}	Off Leakage Current	$\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{AN}}=0 \mathrm{~V}, 1.2 \mathrm{~V}$, Switch Off to $\mathrm{B}_{\mathrm{N}} / \mathrm{C}_{\mathrm{N}}, \mathrm{V}_{\mathrm{BN}} / \mathrm{V}_{\mathrm{CN}}=1.2 \mathrm{~V}, 0 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$

LOGIC INPUT CHARACTERISTICS (SEL Pin)

V_{IH}	SEL	Input HIGH Voltage	(Note 7)	$\begin{aligned} & 0.65 x \\ & V_{D D} \end{aligned}$		V_{DD}	V
$\mathrm{V}_{\text {IL }}$	SEL	Input LOW Voltage	(Note 7)	0		$\begin{aligned} & 0.35 x \\ & V_{D D} \end{aligned}$	V
V_{IK}	SEL	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{I}_{\text {SEL }}=-18 \mathrm{~mA}$		-0.7	-1.2	V
$\mathrm{IIH}^{\text {H }}$	SEL	Input HIGH Current	$V_{\text {DD }}=\mathrm{Max}, \mathrm{V}_{\text {SEL }}=\mathrm{V}_{\mathrm{DD}}$			± 5	$\mu \mathrm{A}$
IIL	SEL	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{V}_{\text {SEL }}=\mathrm{GND}$			± 5	$\mu \mathrm{A}$

SWITCHING CHARACTERISTICS

$\mathrm{t}_{\text {SELON }}$	$\begin{gathered} \hline \text { SEL, }^{2}, A_{N}, \\ B_{N} / C_{N} \end{gathered}$	Line Enable Time	$\begin{gathered} \text { SEL to } A_{N}, B_{N}, C_{N} \\ R_{L}=50 \Omega, C_{L}=20 \mathrm{pF} \end{gathered}$	8.0	ns
$\mathrm{t}_{\text {Seloff }}$	$\begin{gathered} \text { SEL, } A_{N}, \\ B_{N} / C_{N} \end{gathered}$	Line Disable Time	SEL to A_{N}, B_{N}, C_{N} $R_{L}=50 \Omega, C_{L}=20 \mathrm{pF}$	5.0	ns
$\mathrm{t}_{\mathrm{b}-\mathrm{b}}$	$\mathrm{A}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}} / \mathrm{C}_{\mathrm{N}}$	Bit-to-bit skew	Within the same differential pair	9.0	ps
$\mathrm{t}_{\text {ch-ch }}$	A_{N}, B_{N}	Channel-to channel skew	Maximum skew between all channels	50	ps

5. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
6. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
7. Guaranteed by design and/or characterization.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$)

Symbol	Pins	Parameters	Conditions (Note 5)	Min.	Typ (Note 6)	Max.	Units

DYNAMIC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

BR	A_{N} to B_{N}, A_{N} to C_{N}	Signal Bit Rate		5.0	Gbps
D_{IL}	A_{N} to B_{N}, A_{N} to C_{N}	Differential Insertion Loss	$\mathrm{f}=3 \mathrm{GHz}$	-2.0	dB
			$\mathrm{f}=100 \mathrm{MHz}$	-0.7	dB
$\mathrm{D}_{\text {CTK }}$	$\mathrm{A}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}}, \mathrm{C}_{\mathrm{N}}$	Differential Crosstalk	$\mathrm{f}=3 \mathrm{GHz}$	-30	dB
			$\mathrm{f}=100 \mathrm{MHz}$	-58	dB
DIso	A_{N} to B_{N}, A_{N} to C_{N}	Differential Off Isolation	$\mathrm{f}=3 \mathrm{GHz}$	-23	dB
			$\mathrm{f}=100 \mathrm{MHz}$	-58	dB
DRL	A_{N} to B_{N}, A_{N} to C_{N}	Differential Return Loss	$\mathrm{f}=3 \mathrm{GHz}$	-6.0	dB
			$f=100 \mathrm{MHz}$	-22	dB

5. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
6. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
7. Guaranteed by design and/or characterization.

TYPICAL OPERATING CHARACTERISTICS

Figure 4. PCI Express Eye Diagram at 5 Gbps, 800 mVpp Differential Swing (Minimum Case)

Figure 6. Differential Crosstalk

Figure 8. $\mathbf{R}_{\mathbf{O N}}$ vs. $\mathbf{V}_{\text {IS }}$

PARAMETER MEASUREMENT INFORMATION

VNA Source Balanced Port 1

Figure 9. Differential Insertion Loss ($\mathrm{S}_{\mathrm{DD} 21}$) and Differential Return Loss ($\mathrm{S}_{\mathrm{DD11}}$)

Figure 11. Differential Crosstalk ($\mathrm{S}_{\mathrm{DD} 21}$)

Figure 10. Differential Off Isolation (SD21)

$\mathrm{t}_{\text {skew }}=\left|\mathrm{t}_{\text {PLH1 }}{ }^{-\mathrm{t}_{\text {PLH }}}\right|$ or $\left|\mathrm{t}_{\text {PHL1 }}{ }^{-\mathrm{t}_{\text {PHL2 }}}\right|$
Figure 12. Bit-to-Bit and Channel-to-Channel Skew

Figure 13. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$

Figure 14. Off State Leakage

Figure 15. On State Leakage

WQFN42 3.5x9, 0.5P

CASE 510AP-01
ISSUE O
DATE 15 FEB 2010
SCALE 2:1

DETAIL A ALTERNATE TERMINAL CONSTRUCTIONS

DETAIL B alternate construction

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP
FROM TERMINAL TIP. AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.70	0.80
A1	0.00	0.05
A3	0.20 REF	
b	0.20	0.30
D	3.50 BSC	
D2	1.95	2.15
E	9.00 BSC	
E2	7.45	7.65
e	0.50 BSC	
K	0.20	---
L	0.30	0.50
L1	0.00	0.15

GENERIC

MARKING DIAGRAM*

XXXXXXXX
XXXXXXXX
AWLYYWWG

BOTTOM VIEW

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

RECOMMENDED

MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98AON48316E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WQFN42 3.5X9, 0.5P		PAGE 1 OF 1

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any a
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

