4-Channel Differential 1:2 Mux/Demux Switch for PCI Express Gen2

The NCN2411 is a 4–Channel differential SPDT switch designed to route PCI Express Gen2 signals. When used in a PCI Express application, the switch can handle up to two PCIe lanes. Due to the ultra–low ON–state capacitance (2 pF typ) and resistance (7.5 Ω typ), this switch is ideal for switching high frequency signals up to a signal bit rate (BR) of 5 Gbps. This switch pinout is designed to be used in BTX form factor desktop PCs and is available in a space–saving 3.5x9x0.75 mm WQFN42 package.

Features

- V_{DD} Power Supply from 1.5 V to 2.0 V
- 4 Differential Channels 2:1 MUX/DEMUX
- Compatible with PCIe 2.0
- Data Rate: Supports 5 Gbps
- Low Crosstalk: -30 dB @ 3 GHz
- Low Bit-to-Bit Skew: 5 ps
- Low R_{ON} Resistance: 13 Ω max
- Low C_{ON} Capacitance: 2 pF
- Low Supply Current: 200 µA
- Insertion Loss: -2 dB @ 3 GHz
- Space Saving, Small WQFN-42 Package
- This is a Pb–Free Device

Typical Applications

- Notebook Computer
- Desktop computer
- Server/Storage Area Network

Figure 1. Application Schematic

ON Semiconductor®

http://onsemi.com

A	= Assembly Location
WL	= Wafer Lot
YY	= Year
WW	= Work Week
G	= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NCN2411MTTWG	WQFN42 (Pb-Free)	2000 / Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TRUTH TABLE

Function	SEL
A _N to B _N	L
A _N to C _N	Н

Figure 3. Pin Description (Top View)

PIN FUNCTION AND DESCRIPTION

Pin	Pin Name	Description
2, 3	A0+, A0-	Signal I/0, Channel 0, Port A
6, 7	A1+, A1–	Signal I/0, Channel 1, Port A
11, 12	A2+, A2-	Signal I/0, Channel 2, Port A
15, 16	A3+, A3-	Signal I/0, Channel 3, Port A
38, 37	B0+, B0-	Signal I/0, Channel 0, Port B
36, 35	B1+, B1–	Signal I/0, Channel 1, Port B
29, 28	B2+, B2-	Signal I/0, Channel 2, Port B
27, 26	B3+, B3-	Signal I/0, Channel 3, Port B
34, 33	C0+, C0-	Signal I/0, Channel 0, Port C
32, 31	C1+, C1-	Signal I/0, Channel 1, Port C
25, 24	C2+, C2-	Signal I/0, Channel 2, Port C
23, 22	C3+, C3-	Signal I/0, Channel 3, Port C
9	SEL	Operational Mode Select (When SEL = 0: A \rightarrow B, When SEL = 1: A \rightarrow C) Do not float this pin.
5, 8, 13, 18, 20, 30, 40, 42	VDD	DC Supply: 1.5 V to 2.0 V
1, 4, 10, 14, 17, 19, 21, 39, 41	GND	Power Ground
Exposed Pad	-	The exposed pad on the backside of package is internally connected to GND. Externally the pad should also be user-connected to GND.

MAXIMUM RATINGS

Parameter	Symbol	Rating	Units
Power Supply Voltage	V _{DD}	-0.5 to 2.5	V _{DC}
Input/Output Voltage Range of the Switch (A_N , B_N , C_N)	V _{IS}	-0.5 to V _{DD}	V _{DC}
Selection Pin Voltages	V _{SEL}	-0.5 to V _{DD}	V _{DC}
Continuous Current Through One Switch	I _{cc}	±120	mA
Maximum Junction Temperature (Note 1)	TJ	150	°C
Operating Ambient Temperature	T _A	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Thermal Resistance, Junction-to-Air	$R_{ heta JA}$	75	°C/W
Latch-up Current (Note 2)	ILU	±100	mA
Human Body Model (HBM) ESD Rating (Note 3)	ESD HBM	7000	V
Machine Model (MM) ESD Rating (Note 3)	ESD MM	400	V
Moisture Sensitivity (Note 4)	MSL	Level 1	-

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect

Recommended Operating Conducts is not implied. Extended expected to career and device reliability.
Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded.
Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78.
This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±7.0 kV per JEDEC standard: JESD22–A114 for all pins. Machine Model (MM) ±400 V per JEDEC standard: JESD22-A115 for all pins.

4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 1.5$ V to 2.0 V, GND = 0V)

Symbol	Pins	Parameters	Conditions (Note 5)	Min.	Typ (Note 6)	Max.	Units
POWER S	UPPLY				1		
V _{DD}	V _{DD} , GND	Supply Voltage Range	With respect to GND	1.5	1.8	2.0	V
I _{DD}	V _{DD} , GND	Quiescent Supply Current	V_{DD} = 2 V, V_{SEL} = GND or V_{DD}		200	300	μΑ
DATA SW		ANCE					
V _{IS}	A _N , B _N , C _N	Data Input/Output Voltage Range		0		1.2	V
R _{ON}	B _N	On Resistance (B _N)	V_{DD} = 1.5 V, V_{IS} = 0 V to 1.2 V, I_{IS} = 15 mA		7.5	13	Ω
R _{ON}	C _N	On Resistance (C _N)	V_{DD} = 1.5 V, V_{IS} = 0 V to 1.2 V, I_{IS} = 15 mA		8.0	13	Ω
R _{ON(flat)}	B _N	On Resistance Flatness	V_{DD} = 1.5 V, V_{IS} = 0 V to 1.2 V, I _{IS} = 15 mA (Note 7)		0.1	1.24	Ω
R _{ON(flat)}	C _N	On Resistance Flatness	V_{DD} = 1.5 V, V_{IS} = 0 V to 1.2 V, I _{IS} = 15 mA (Note 7)		0.1	1.24	Ω
ΔR _{ON}	B _N	On Resistance Matching(B _N)	V _{DD} = 1.5 V, V _{IS} = 0 V, I _{IS} = 15 mA (Note 7)			0.35	Ω
ΔR_{ON}	C _N	On Resistance Matching(C _N)	V_{DD} = 1.5 V, V_{IS} = 0 V, I_{IS} = 15 mA (Note 7)			0.35	Ω
C _{ON}	A_N to B_N , A_N to C_N	On Capacitance	f = 1 MHz, Switch On, Open Output		2.0		pF
C _{OFF}	A _N to B _N , A _N to C _N	Off Capacitance	f = 1 MHz, Switch Off		1.5		pF
I _{ON}	A _N to B _N , A _N to C _N	On Leakage Current	V_{DD} = 2 V, V_{AN} = 0 V, 1.2 V, Switch On to B_N/C_N , B_N/C_N pins are unconnected	-1		+1	μΑ
I _{OFF}	A_N to B_N , A_N to C_N	Off Leakage Current	$\label{eq:VDD} \begin{array}{l} V_{DD} = 2 \ V, \ V_{AN} = 0 \ V, \ 1.2 \ V, \ Switch \\ Off to \ B_N/C_N, \ V_{BN}/V_{CN} = 1.2 \ V, \ 0 \ V \end{array}$	-1		+1	μA

LOGIC INPUT CHARACTERISTICS (SEL Pin)

V _{IH}	SEL	Input HIGH Voltage	(Note 7)	0.65 x V _{DD}		V _{DD}	V
V _{IL}	SEL	Input LOW Voltage	(Note 7)	0		0.35 x V _{DD}	V
V _{IK}	SEL	Clamp Diode Voltage	V _{DD} = Max, I _{SEL} = -18mA		-0.7	-1.2	V
I _{IH}	SEL	Input HIGH Current	V_{DD} = Max, V_{SEL} = V_{DD}			±5	μA
Ι _{ΙL}	SEL	Input LOW Current	V _{DD} = Max, V _{SEL} = GND			±5	μA

SWITCHING CHARACTERISTICS

tSELON	SEL, A _N , B _N /C _N	Line Enable Time	SEL to A_N , B_N , C_N $R_L = 50 \Omega$, $C_L = 20 pF$	8.0	ns
tSELOFF	SEL, A _N , B _N /C _N	Line Disable Time	SEL to A_N , B_N , C_N $R_L = 50 \Omega$, $C_L = 20 pF$	5.0	ns
t _{b-b}	$A_N, B_N/C_N$	Bit-to-bit skew	Within the same differential pair	9.0	ps
t _{ch–ch}	A _N , B _N	Channel-to channel skew	Maximum skew between all channels	50	ps

For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
 Typical values are at V_{DD} = 1.8 V, T_A = 25°C ambient and maximum loading.
 Guaranteed by design and/or characterization.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RA	ANGE ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 1.5$ V to 2.0 V, GND = 0V)
---	---

Symbol	Pins	Parameters	Conditions (Note 5)	Min.	Тур	Max.	Units
					(Note 6)		

DYNAMIC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

BR	A_N to B_N , A_N to C_N	Signal Bit Rate		5.0	Gbps
D _{IL}	A _N to B _N ,	A _N to B _N , Differential Insertion Loss	f = 3 GHz	-2.0	dB
	A _N to C _N		f = 100 MHz	-0.7	dB
D _{CTK}	A_N, B_N, C_N	Differential Crosstalk	f = 3 GHz	-30	dB
			f = 100 MHz	-58	dB
D _{ISO}	A _N to B _N , Differential Off Isolation	f = 3 GHz	-23	dB	
	A_N to C_N		f = 100 MHz	-58	dB
D _{RL}	A _N to B _N ,	A _N to B _N , Differential Return Loss	f = 3 GHz	-6.0	dB
	A _N to C _N		f = 100 MHz	-22	dB

For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
 Typical values are at V_{DD} = 1.8 V, T_A = 25°C ambient and maximum loading.
 Guaranteed by design and/or characterization.

TYPICAL OPERATING CHARACTERISTICS

Figure 4. PCI Express Eye Diagram at 5 Gbps, 800 mVpp Differential Swing (Minimum Case)

Figure 6. Differential Crosstalk

Figure 7. Differential Return Loss

PARAMETER MEASUREMENT INFORMATION

w

t_{skew} = |t_{PLH1}-t_{PLH2}| or |t_{PHL1}-t_{PHL2}|

Figure 13. t_{ON} and t_{OFF}

Figure 14. Off State Leakage

Figure 15. On State Leakage

DOCUMENT NUMBER:	98AON48316E	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	the Document Repository. COPY" in red.
DESCRIPTION:	WQFN42 3.5X9, 0.5P		PAGE 1 OF 1

ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative