# **NSR0240V2, NSVR0240V2**

# **Schottky Barrier Diode**

Schottky barrier diodes are optimized for very low forward voltage drop and low leakage current and are used in a wide range of dc–dc converter, clamping and protection applications in portable devices. NSR0240V2 in a SOD–523 miniature package enables designers to meet the challenging task of achieving higher efficiency and meeting reduced space requirements.

#### **Features**

- Very Low Forward Voltage Drop 480 mV @ 100 mA
- Low Reverse Current 0.2 μA @ 25 V VR
- 250 mA of Continuous Forward Current
- Power Dissipation of 200 mW with Minimum Trace
- Very High Switching Speed
- Low Capacitance CT = 4 pF
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

### **Typical Applications**

- LCD and Keypad Backlighting
- Camera Photo Flash
- Buck and Boost dc-dc Converters
- Reverse Voltage and Current Protection
- Clamping & Protection

#### Markets

- Mobile Handsets
- MP3 Players
- Digital Camera and Camcorders
- Notebook PCs & PDAs
- GPS

# **MAXIMUM RATINGS**

| Rating                                        | Symbol           | Value          | Unit |
|-----------------------------------------------|------------------|----------------|------|
| Reverse Voltage                               | V <sub>R</sub>   | 40             | Vdc  |
| Forward Continuous Current (DC)               | IF               | 250            | mA   |
| Non-Repetitive Peak Forward Surge Current     | I <sub>FSM</sub> | 2.0            | Α    |
| ESD Rating: Human Body Model<br>Machine Model | ESD              | Class<br>Class |      |

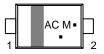
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



# ON Semiconductor®

www.onsemi.com


# 40 VOLT SCHOTTKY BARRIER DIODE



SOD-523 CASE 502



#### MARKING DIAGRAM



AC = Device Code M = Date Code\*

= Pb–Free Package

(Note: Microdot may be in either location)

\*Date Code orientation position may vary depending upon manufacturing location.

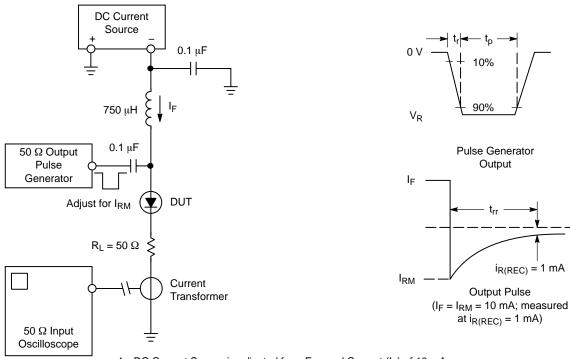
#### **ORDERING INFORMATION**

| Device        | Package              | Shipping <sup>†</sup>  |
|---------------|----------------------|------------------------|
| NSR0240V2T1G  | SOD-523<br>(Pb-Free) | 3,000 /<br>Tape & Reel |
| NSVR0240V2T1G | SOD-523<br>(Pb-Free) | 3,000 /<br>Tape & Reel |
| NSR0240V2T5G  | SOD-523<br>(Pb-Free) | 8,000 /<br>Tape & Reel |
| NSVR0240V2T5G | SOD-523<br>(Pb-Free) | 8,000 /<br>Tape & Reel |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

# NSR0240V2, NSVR0240V2

#### THERMAL CHARACTERISTICS


| Characteristic                                                                                  | Symbol                            | Max         | Unit |
|-------------------------------------------------------------------------------------------------|-----------------------------------|-------------|------|
| Thermal Resistance Junction–to–Ambient (Note 1) Total Power Dissipation @ T <sub>A</sub> = 25°C | R <sub>0</sub> JA                 | 600         | °C/W |
|                                                                                                 | PD                                | 200         | mW   |
| Thermal Resistance Junction–to–Ambient (Note 2) Total Power Dissipation @ T <sub>A</sub> = 25°C | R <sub>0</sub> JA                 | 300         | °C/W |
|                                                                                                 | P <sub>D</sub>                    | 400         | mW   |
| Junction and Storage Temperature Range                                                          | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150 | °C   |

- 1. Mounted onto a 4 in square FR-4 board 10 mm sq. 1 oz. Cu 0.06" thick single-sided. Operating to steady state.
- 2. Mounted onto a 4 in square FR-4 board 1 in sq. 1 oz. Cu 0.06" thick single-sided. Operating to steady state.

# **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                        | Symbol          | Min         | Тур               | Max               | Unit |
|-------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------------|-------------------|------|
| Reverse Leakage<br>(V <sub>R</sub> = 10 V)<br>(V <sub>R</sub> = 25 V)<br>(V <sub>R</sub> = 40 V)      | I <sub>R</sub>  | -<br>-<br>- | -<br>0.2<br>0.5   | 0.55<br>2.0<br>10 | μΑ   |
| Forward Voltage<br>(I <sub>F</sub> = 10 mA)<br>(I <sub>F</sub> = 100 mA)<br>(I <sub>F</sub> = 200 mA) | V <sub>F</sub>  | -<br>-<br>- | 345<br>485<br>580 | 390<br>550<br>700 | mV   |
| Total Capacitance (V <sub>R</sub> = 5.0 V, f = 1 MHz)                                                 | СТ              | _           | 4.0               | _                 | pF   |
| Reverse Recovery Time<br>(I <sub>F</sub> = I <sub>R</sub> = 10 mA, I <sub>R</sub> = 1.0 mA)           | t <sub>rr</sub> | _           | 3.0               | _                 | ns   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.



- 1. DC Current Source is adjusted for a Forward Current (I<sub>F</sub>) of 10 mA.
- 2. Pulse Generator Output is adjusted for a Peak Reverse Recovery Current I<sub>RM</sub> of 10 mA.
- 3. Pulse Generator transition time <<  $t_{rr}$ .
  4.  $I_{R(REC)}$  is measured at 1 mA. Typically 0.1 X  $I_{RM}$  or 0.25 X  $I_{RM}$ .
- 5. t<sub>p</sub> » t<sub>rr</sub>

Figure 1. Recovery Time Equivalent Test Circuit

# **NSR0240V2, NSVR0240V2**




Figure 2. Forward Voltage

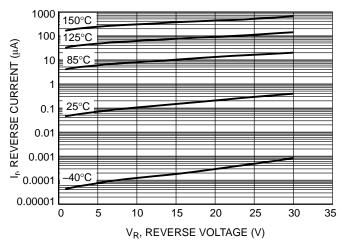
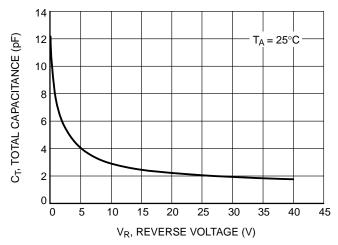
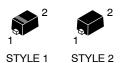
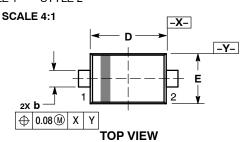
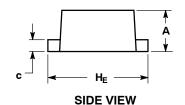
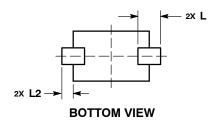


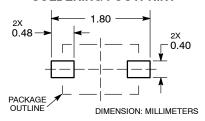

Figure 3. Leakage Current



Figure 4. Total Capacitance




SOD-523 CASE 502-01 ISSUE E


**DATE 28 SEP 2010** 

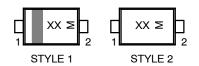






# **RECOMMENDED SOLDERING FOOTPRINT\***




\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
  MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PRO-TRUSIONS, OR GATE BURRS.

|     | MILLIMETERS |      |      |
|-----|-------------|------|------|
| DIM | MIN         | NOM  | MAX  |
| Α   | 0.50        | 0.60 | 0.70 |
| b   | 0.25        | 0.30 | 0.35 |
| С   | 0.07        | 0.14 | 0.20 |
| D   | 1.10        | 1.20 | 1.30 |
| E   | 0.70        | 0.80 | 0.90 |
| HE  | 1.50        | 1.60 | 1.70 |
| L   | 0.30 REF    |      |      |
| L2  | 0.15        | 0.20 | 0.25 |

# **GENERIC MARKING DIAGRAM\***



XX = Specific Device Code Date Code

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 2: NO POLARITY STYLE 1: PIN 1. CATHODE (POLARITY BAND) 2. ANODE

| DOCUMENT NUMBER: | 98AON11524D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SOD-523     |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative