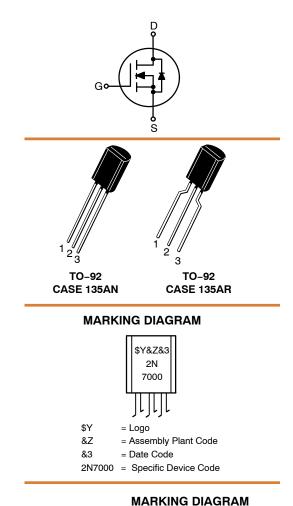
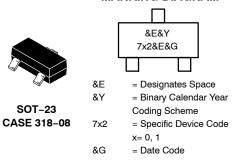
onsemi

N-Channel Enhancement Mode Field Effect Transistor


2N7000, 2N7002, NDS7002A


Description

These N-channel enhancement mode field effect transistors are produced using **onsemi's** proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while providing rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 400 mAdc and can deliver pulsed currents up to 2 A. These products are particularly suited for low-voltage, low-current applications, such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Features

- High Density Cell Design for Low R_{DS(on)}
- Voltage Controlled Small Signal Switch
- Rugged and Reliable
- High Saturation Current Capability
- This Device is Pb–Free and Halogen Free

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

			Value			
Symbol	Parameter	2N7000	2N7002	NDS7002A	Unit	
V _{DSS}	Drain-to-Source Voltage		60	•	V	
V _{DGR}	Drain-Gate Voltage ($R_{GS} \le 1$ MW)		60		V	
V _{GSS}	Gate-Source Voltage - Continuous		±20			
	Gate-Source Voltage - Non Repetitive (tp < 50 ms)		±40			
Ι _D	Maximum Drain Current – Continuous	200	115	280	mA	
	Maximum Drain Current – Pulsed	500	800	1500		
PD	Maximum Power Dissipation Derated above 25°C	400	200	300	mW	
		3.2	1.6	2.4	mW/°C	
T _J , T _{STG}	Operating and Storage Temperature Range	-55	-55 to 150 -65 to 150		°C	
ΤL	Maximum Lead Temperature for Soldering Purposes, 1/16-inch from Case for 10 s		300		°C	

ABSOLUTE MAXIMUM RATINGS Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

		Value			
Symbol	Parameter	2N7000	2N7002	NDS7002A	Unit
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	312.5	625	417	°C/W

ELECTRICAL CHARACTERISTICS

Values are at T_C = 25°C unless otherwise noted.

Symbol	Parameter	Conditions	Туре	Min.	Тур.	Max.	Unit
FF CHARA	CTERISTICS						-
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 10 μ A	All	60	_	-	V
I _{DSS}	Zero Gate Voltage Drain	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$	2N7000	-	-	1	μA
	Current	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$		-	_	1	mA
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$	2N7002	_	-	1	μA
		V_{DS} = 60 V, V_{GS} = 0 V, T_{C} = 125°C	NDS7002A	-	-	0.5	mA
I _{GSSF}	Gate – Body Leakage, Forward	V_{GS} = 15 V, V_{DS} = 0 V	2N7000	-	-	10	nA
		V_{GS} = 20 V, V_{DS} = 0 V	2N7002 NDS7002A	-	_	100]
I _{GSSR}	Gate – Body Leakage,	V_{GS} = -15 V, V_{DS} = 0 V	2N7000	-	10	nA	
	Reverse	V_{GS} = -20 V, V_{DS} = 0 V	2N7002 NDS7002A	-	-	-100	1

ON CHARACTERISTICS

V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	2N7000	0.8	2.1	3	V
		$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2N7002 NDS7002A	1	2.1	2.5	

ELECTRICAL CHARACTERISTICS (continued) Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Туре	Min.	Тур.	Max.	Unit
ON CHARAC	TERISTICS						
R _{DS(on)}	Static Drain-Source	V _{GS} = 10 V, I _D = 500 mA	2N7000	_	1.2	5	Ω
	On-Resistance	V_{GS} = 10 V, I _D = 500 mA, T _C = 125°C		-	1.9	9	
		V_{GS} = 4.5 V, I _D = 75 mA		-	1.8	5.3	
		V_{GS} = 10 V, I _D = 500 mA	2N7002	-	1.2	7.5	1
		V_{GS} = 10 V, I _D = 500 mA, T _C = 100°C		-	1.7	13.5	
		V_{GS} = 5 V, I_D = 50 mA		-	1.7	7.5	1
		V_{GS} = 5 V, I_D = 50 mA, T_C = 100°C		-	2.4	13.5	-
		V_{GS} = 10 V, I _D = 500 mA	NDS7002A	-	1.2	2	
		V_{GS} = 10 V, I _D = 500 mA, T _C = 125°C		-	2	3.5	
		$V_{GS} = 5 \text{ V}, \text{ I}_{D} = 50 \text{ mA}$		-	1.7	3	
		V_{GS} = 5 V, I_D = 50 mA, T_C = 125°C		-	2.8	5	
V _{DS(on)}	Drain-Source On-Voltage	V _{GS} = 10 V, I _D = 500 mA	2N7000	-	0.6	2.5	V
		V_{GS} = 4.5 V, I _D = 75 mA		-	0.14	0.4	1
		V_{GS} = 10 V, I _D = 500 mA	2N7002	-	0.6	3.75	1
		$V_{GS} = 5.0 \text{ V}, \text{ I}_{D} = 50 \text{ mA}$		-	0.09	1.5	1
		V_{GS} = 10 V, I _D = 500 mA	NDS7002A	-	0.6	1	
		V_{GS} = 5.0 V, I _D = 50 mA		-	0.09	0.15	
I _{D(on)}	On-State Drain Current	V_{GS} = 4.5 V, V_{DS} = 10 V	2N7000	75	600	-	mA
		V_{GS} = 10 V, $V_{DS} \geq$ 2 $V_{DS(on)}$	2N7002	500	2700	-	
		V_{GS} = 10 V, $V_{DS} \geq$ 2 $V_{DS(on)}$	NDS7002A	500	2700	-	
9fs	Forward Transconductance	V_{DS} = 10 V, I_{D} = 200 mA	2N7000	100	320	-	mS
		$V_{DS} \geq 2 \ V_{DS(on)}, \ I_D = 200 \ mA$	2N7002	80	320	-	
		$V_{DS} \ge 2 V_{DS(on)}, I_D = 200 \text{ mA}$	NDS7002A	80	320	-	

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$	All	-	20	50	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	All	-	11	25	
C _{rss}	Reverse Transfer Capacitance		All	-	4	5	
t _{on}	Turn-On Time		2N7000	-	-	10	ns
			2N7002 NDS7002A	-	-	20	
t _{off}	Turn-Off Time		2N7000	_	-	10	ns
			2N7002 NDS7002A	_	_	20	

ELECTRICAL CHARACTERISTICS (continued)

Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

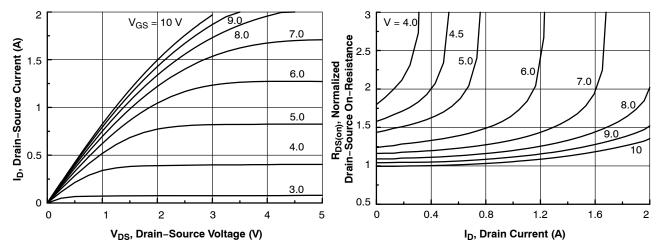
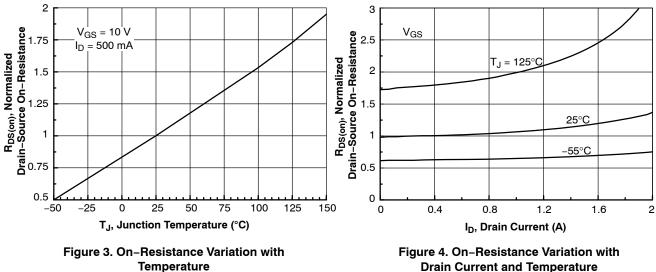
Symbol	Parameter	Conditions	Туре	Min.	Тур.	Max.	Unit

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

۱ _S	Maximum Continuous Drain-S	ource Diode Forward Current	2N7002	-	-	115	mA
			NDS7002A	_	-	280	
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current	2N7002	-	-	0.8	Α	
			NDS7002A	-	-	1.5	
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 115 mA$ (Note 1)	2N7002	-	0.88	1.5	V
		V _{GS} = 0 V, I _S = 400 mA (Note 1)	NDS7002A	-	0.88	1.2	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse test: Pulse Width \leq 300 µs, Duty Cycel \leq 2 %

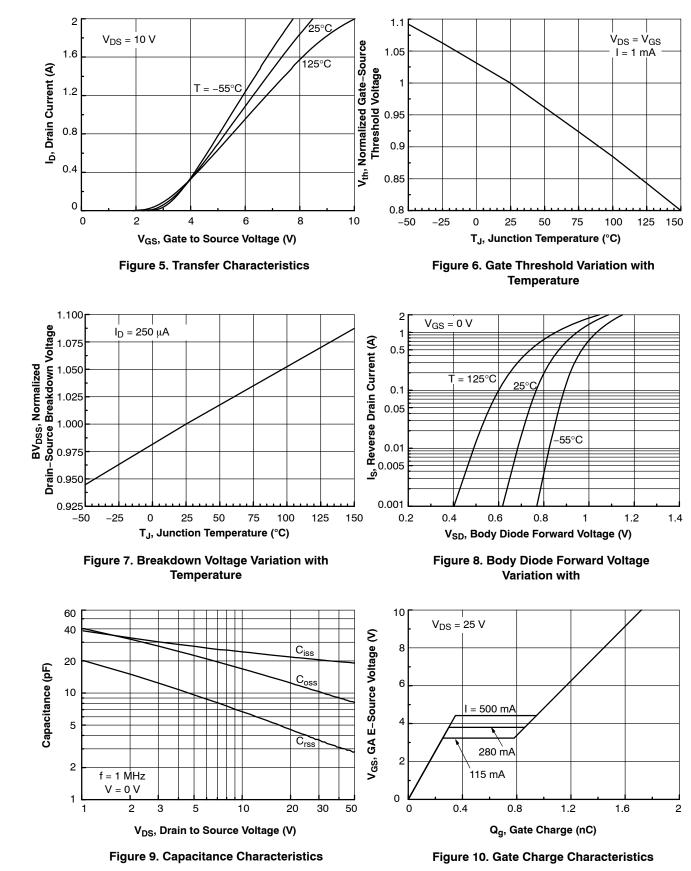


Figure 2. On-Resistance Variation with **Gate Voltage and Drain Current**

Drain Current and Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

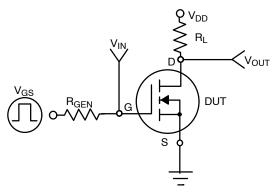


Figure 11. Switching Test Circuit

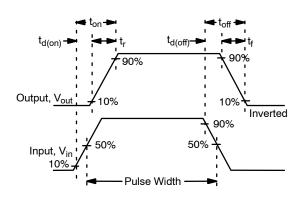


Figure 12. Switching Waveforms

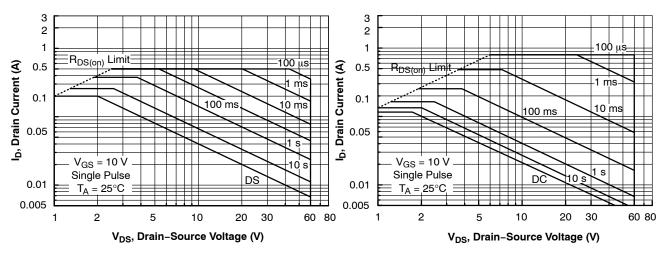


Figure 14. 2N7002 Maximum Safe Operating Area

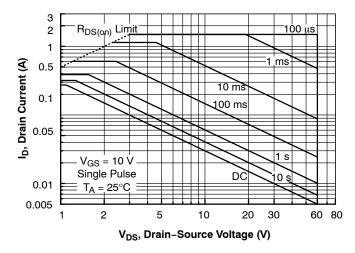


Figure 15. NDS7000A Maximum Safe Operating Area

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

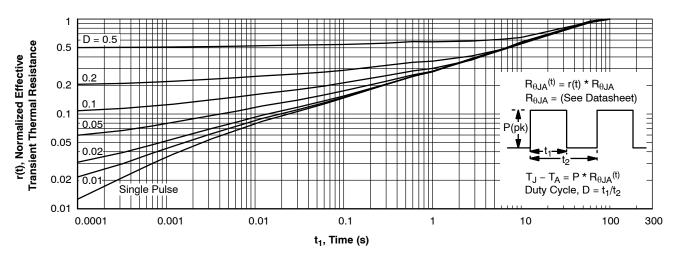
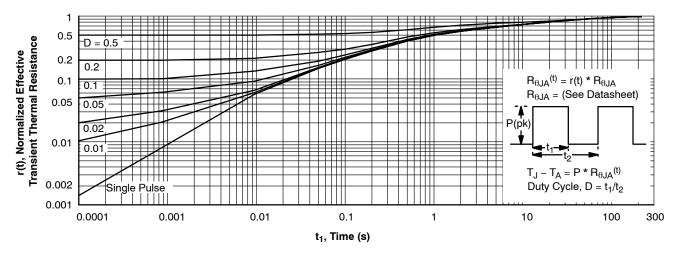
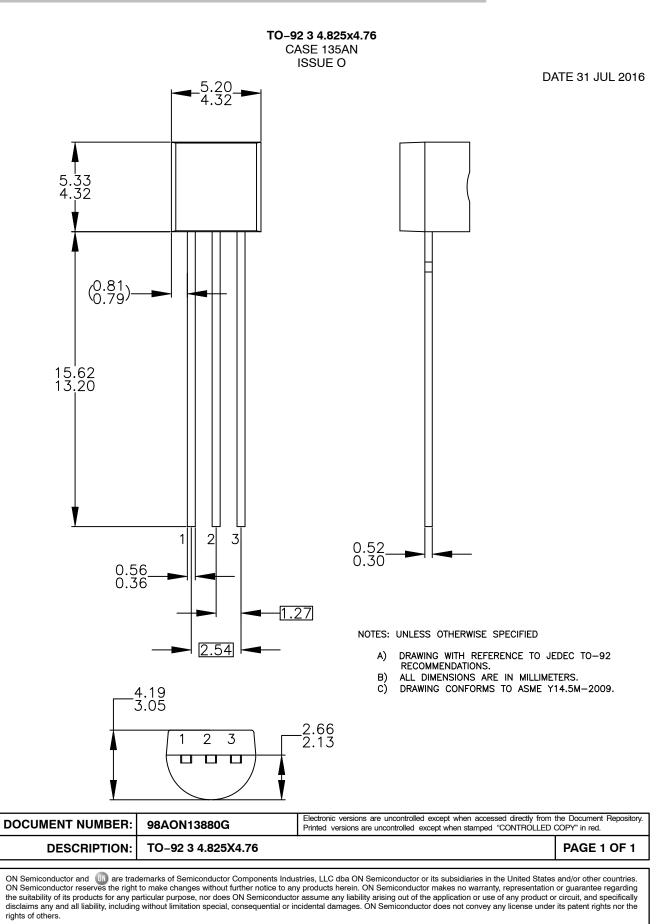


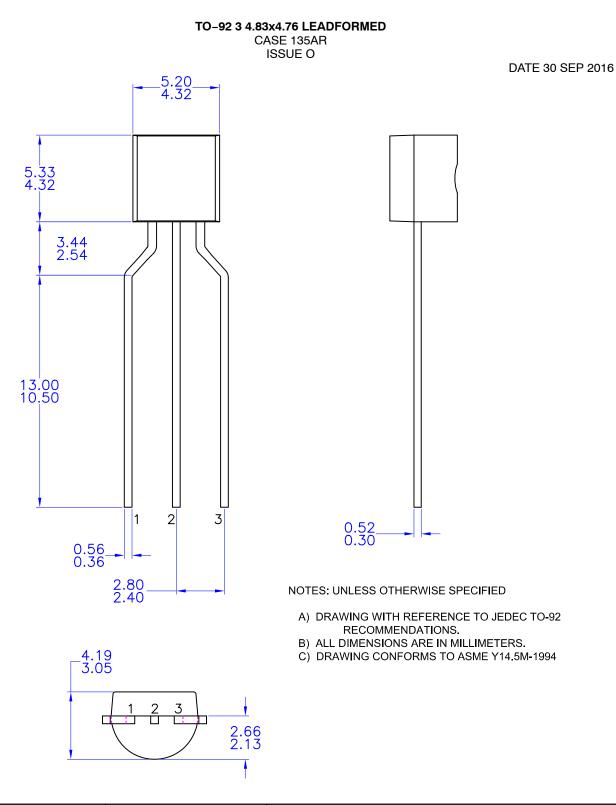
Figure 16. TO-92, 2N7000 Transient Thermal Response Curve



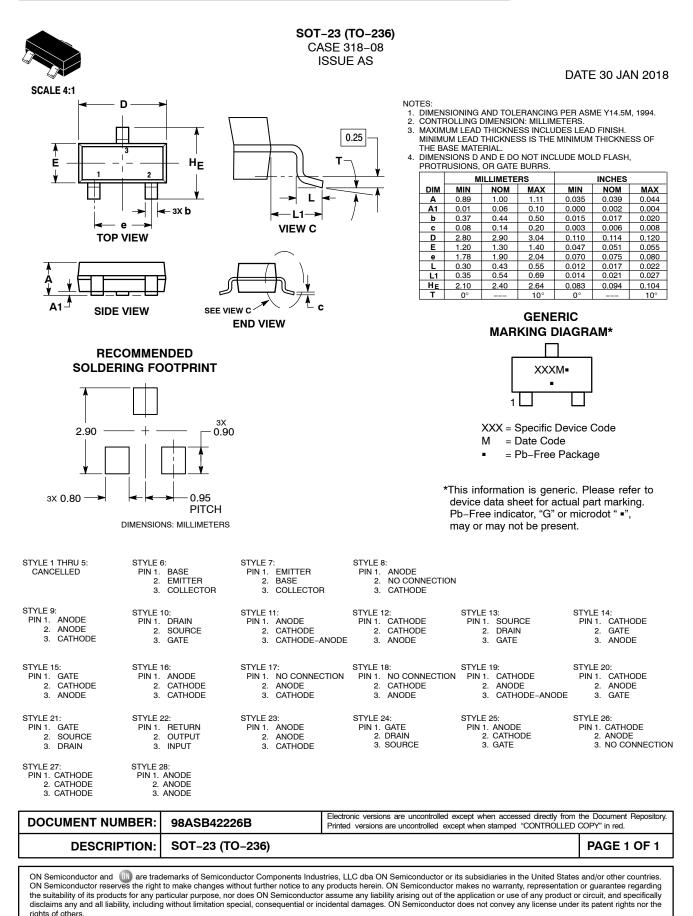

Figure 17. SOT-23, 2N7002 / NDS7002A Transient Thermal Response Curve

ORDERING INFORMATION

Part Number	Marking	Package	Packing Method †	Min Order Qty / Immediate Pack Qty
2N7000	2N7000	TO-92 3L	Bulk	10000 / 1000
2N7000-D74Z		(Pb-Free)	Ammo	2000 / 2000
2N7000-D75Z			Tape and Reel	2000 / 2000
2N7000-D26Z				2000 / 2000
2N7002	702	SOT-23 3L	Tape and Reel	3000 / 3000
NDS7002A	712	(Pb-Free)		3000 / 3000


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

© Semiconductor Components Industries, LLC, 2019



DOCUMENT NUMBER:	98AON13879G Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.							
DESCRIPTION:	TO-92 3 4.83X4.76 LEADF	TO-92 3 4.83X4.76 LEADFORMED						
ON Semiconductor and (III) are trac	ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries. LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.							

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative