MOSFET – Power, N-Channel, DPAK/IPAK 68 A, 30 V

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- I_{DSS} Specified at Elevated Temperature
- DPAK Mounting Information Provided
- These Devices are Pb-Free and are RoHS Compliant

Applications

- DC-DC Converters
- Low Voltage Motor Control
- Power Management in Portable and Battery Powered Products: i.e., Computers, Printers, Cellular and Cordless Telephones, and PCMCIA Cards

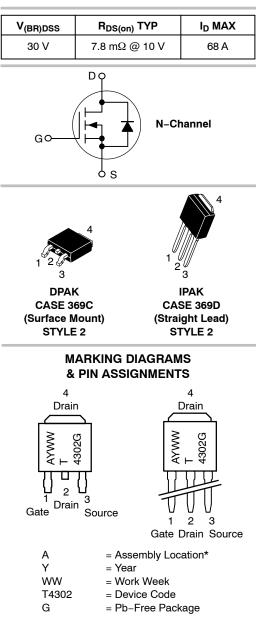
MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	30	Vdc		
Gate-to-Source Voltage - Continuous	V _{GS}	±20	Vdc		
Thermal Resistance – Junction–to–Case Total Power Dissipation @ $T_C = 25^{\circ}C$ Continuous Drain Current @ $T_C = 25^{\circ}C$ (Note 4) Continuous Drain Current @ $T_C = 100^{\circ}C$	R _{θJC} P _D I _D I _D	1.65 75 68 43	°C/W W A A		
Thermal Resistance – Junction–to–Ambient (Note 2) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 100^{\circ}C$ Pulsed Drain Current (Note 3)	R _{θJA} P _D I _D I _D I _{DM}	67 1.87 11.3 7.1 36	°C/W W A A A		
Thermal Resistance – Junction–to–Ambient (Note 1) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 100^{\circ}C$ Pulsed Drain Current (Note 3)	R _{θJA} Pd Id Id IdM	120 1.04 8.4 5.3 28	°C/W W A A A		
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C		
Single Pulse Drain-to-Source Avalanche Energy – Starting T _J = 25°C (V _{DD} = 30 Vdc, V _{GS} = 10 Vdc, Peak I _L = 17 Apk, L = 5.0 mH, R _G = 25 Ω)	E _{AS}	722	mJ		
Maximum Lead Temperature for Soldering Purposes, 1/8 in from case for 10 seconds	ΤL	260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 When surface mounted to an FR4 board using the minimum recommended pad size.

pad size. 2. When surface mounted to an FR4 board using 0.5 sq. in. drain pad size.


3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 2%.

4. Current Limited by Internal Lead Wires.

ON Semiconductor®

http://onsemi.com

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain–Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 250 \ \mu\text{A})$ Positive Temperature Coefficient		V _{(BR)DSS}	30 -	_ 25		Vdc mV/°C
Zero Gate Voltage Drain Current ($V_{GS} = 0$ Vdc, $V_{DS} = 30$ Vdc, T ($V_{GS} = 0$ Vdc, $V_{DS} = 30$ Vdc, T		I _{DSS}			1.0 10	μAdc
Gate-Body Leakage Current (VG	_S = ±20 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-	_	±100	nAdc
ON CHARACTERISTICS						•
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 250 μAdc) Negative Temperature Coefficien	t	V _{GS(th)}	1.0 _	1.9 -3.8	3.0 _	Vdc
Static Drain–Source On–State Resistance $(V_{GS} = 10 \text{ Vdc}, I_D = 20 \text{ Adc})$ $(V_{GS} = 10 \text{ Vdc}, I_D = 10 \text{ Adc})$ $(V_{GS} = 4.5 \text{ Vdc}, I_D = 5.0 \text{ Adc})$		R _{DS(on)}		0.0078 0.0078 0.010	0.010 0.010 0.013	Ω
Forward Transconductance (V _{DS}	= 15 Vdc, I _D = 10 Adc)	gFS	-	20	-	Mhos
OYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	2050	2400	pF
Output Capacitance	$(V_{DS} = 24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	640	800	_
Reverse Transfer Capacitance		C _{rss}	-	225	310	
SWITCHING CHARACTERISTICS	(Note 6)					
Turn-On Delay Time		t _{d(on)}	-	11	20	ns
Rise Time	(V _{DD} = 25 Vdc, I _D = 1.0 Adc, V _{GS} = 10 Vdc,	t _r	-	15	25	
Turn-Off Delay Time	$R_{G} = 6.0 \Omega$	t _{d(off)}	-	85	130	
Fall Time	а ,	t _f	-	55	90	
Turn-On Delay Time		t _{d(on)}	-	11	20	ns
Rise Time	$(V_{DD} = 25 \text{ Vdc}, I_D = 1.0 \text{ Adc},$	t _r	-	13	20	
Turn-Off Delay Time	V _{GS} = 10 Vdc, R _G = 2.5 Ω)	t _{d(off)}	-	55	90	
Fall Time	,	t _f	-	40	75]
Turn-On Delay Time		t _{d(on)}	-	15	-	ns
Rise Time	$(V_{DD} = 24 \text{ Vdc}, I_D = 20 \text{ Adc},$	t _r	-	25	-	
Turn-Off Delay Time	V _{GS} = 10 Vdc, R _G = 2.5 Ω)	t _{d(off)}	-	40	-	
Fall Time		t _f	-	58	-	
Gate Charge		Q _T	-	55	80	nC
$(V_{DS} = 24 \text{ Vdc}, I_{D} = 2.0 \text{ Adc},$		Q _{gs} (Q1)	-	5.5	-	1
	V _{GS} = 10 Vdc)	Q _{gd} (Q2)	-	15	-	
BODY-DRAIN DIODE RATINGS (Note 5)					
Diode Forward On-Voltage ($I_S = 2.3 \text{ Adc}, V_{GS} = 0 \text{ Vdc}$)		V _{SD}	_	0.75	1.0	Vdc

Didue i diwalu Oli-Vollaye	vsD				vuc	
(I _S = 2.3 Adc, V _{GS} = 0 Vdc)		-	0.75	1.0		
(I _S = 20 Adc, V _{GS} = 0 Vdc)		-	0.90	-		
(I_S = 2.3 Adc, V_{GS} = 0 Vdc, T_J =		-	0.65	-		
Reverse Recovery Time			-	39	65	ns
	(I _S = 2.3 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs)	t _a	-	20	-	
		t _b	-	19	-	
Reverse Recovery Stored Charge		Q _{rr}	-	0.043	-	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Indicates Pulse Test: Pulse Width = $300 \ \mu sec \ max$, Duty Cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperature.

50 60 $V_{GS} = 4 V$ $T_J = 25^{\circ}C$ $V_{DS} > = 10 V$ ID, DRAIN CURRENT (AMPS) ID, DRAIN CURRENT (AMPS) 50 V_{GS} = 3.8 V 40 V_{GS} = 4.4 V 40 V_{GS} = 4.6 V 30 $V_{GS} = 5 V$ 30 $T_J = 25^{\circ}C$ V_{GS} = 7 V V_{GS} = 3.4 V 20 $T_J = 100^{\circ}C$ 20 /_{GS} = 10 V V_{GS} = 3.2 V 10 $T_{.1} = -55^{\circ}C$ V_{GS} = 2.8 V V_{GS} = 3.0 V 10 0 0 0 0.5 1.5 2 2.5 3 2 3 5 6 4 V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 1. On-Region Characteristics **Figure 2. Transfer Characteristics** $I_{\rm D} = 10 \, {\rm A}$ T_J = 25°C V_{GS} = 4.5 V V_{GS} = 10 V 0.00E+00 2 4 6 8 0 10 1.00E+01 2.00E+01 3.00E+01 4.00E+01 5.00E+01 6.00E+01 V_{GS}, GATE-TO-SOURCE VOLTAGE (V) ID, DRAIN CURRENT (AMPS) Figure 3. On-Resistance vs. Figure 4. On-Resistance vs. Drain Current Gate-To-Source Voltage and Gate Voltage 10000 l_D = 18.5 A $V_{GS} = 0 V$ V_{GS} = 10 V IDSS, LEAKAGE (nA) 11 11 T_{.1} = 150°C $T_J = 100^{\circ}C$ 1 -50 -25 0 25 50 75 100 125 150 5 10 15 20 25 30

TYPICAL CHARACTERISTICS

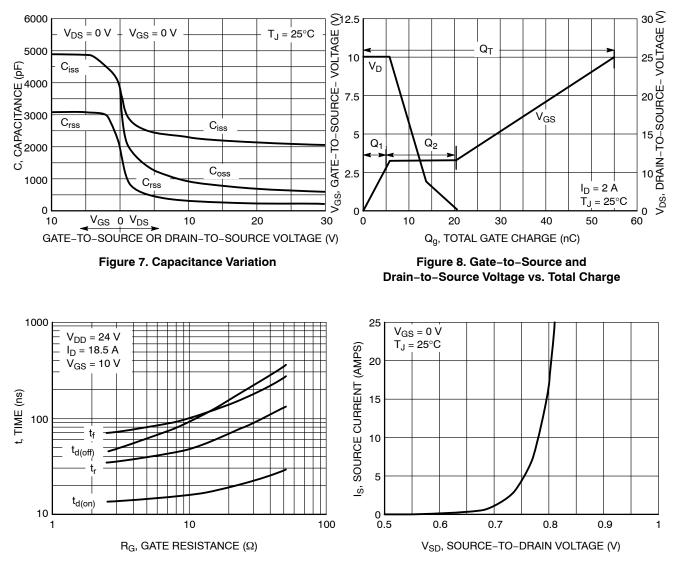
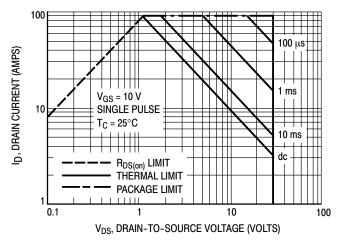
Figure 5. On–Resistance Variation with Temperature

TJ, JUNCTION TEMPERATURE (°C)

Figure 6. Drain-To-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

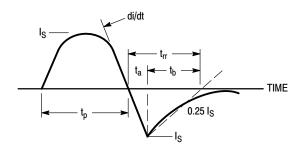
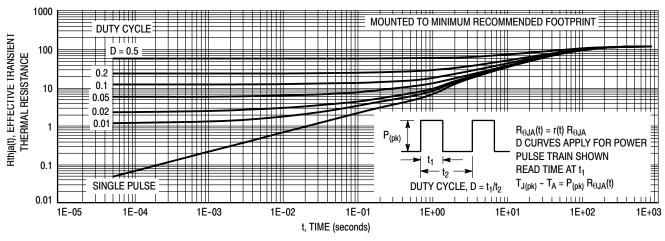
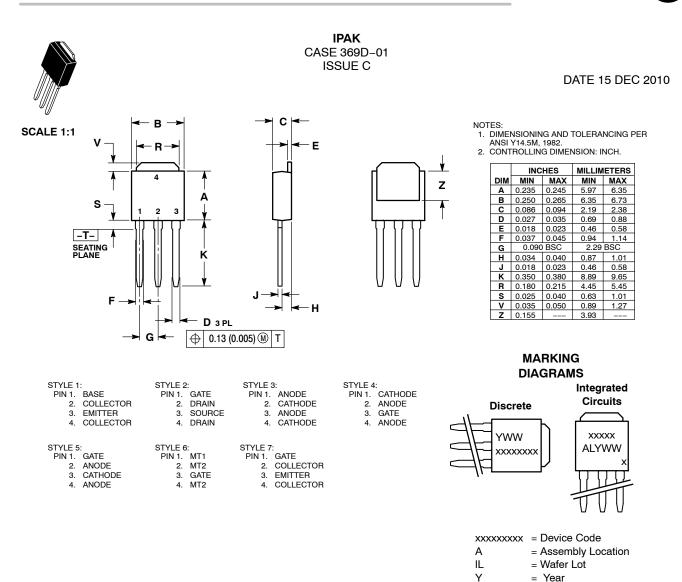

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS




Figure 13. Thermal Response – Various Duty Cycles

ORDERING INFORMATION

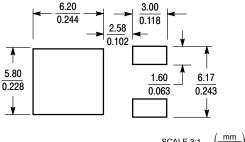
Device	Package Type	Package	Shipping [†]
NTD4302G	DPAK	369C (Pb-Free)	75 Units / Rail
NTD4302-1G	IPAK	369D (Pb-Free)	75 Units / Rail
NTD4302T4G	DPAK	369C (Pb-Free)	2500 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON

DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	IPAK (DPAK INSERTION MOUNT) PAGE 1				
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

WW


= Work Week

rights of others.

1

L3

L4

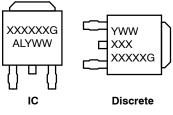
*For additional information on our Pb-Free strategy and soldering

SCALE 3:1

Inches

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DATE 03 JUN 2010


1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

ON Semiconductor

- 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- THERMAL FAD CONTOR OF FIGURE WITHIN DEMONSIONS b3, L3 and Z.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL
- NOT EXCEED 0.006 INCHES PER SIDE 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM

	INC	HES	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
p	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
c	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	8 REF 2.74 REF		REF
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Ζ	0.155		3.93	

MARKING DIAGRAM*

= Device Code = Assembly Location L = Wafer Lot Y = Year = Work Week WW G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1		
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative