IGBT - Field Stop, Trench
 650 V, 40 A

FGH40T65SPD-F085

Description

Using the novel field stop $3^{\text {rd }}$ generation IGBT technology, FGH40T65SPD-F085 offers the optimum performance with both low conduction loss and switching loss for a high efficiency operation in various applications, which provides 50 V higher blocking voltage and rugged high current switching reliability.

Meanwhile, this part also offers and advantage of outstanding performance in parallel operation.

Features

- Low Saturation Voltage: $\mathrm{V}_{\mathrm{CE}(\mathrm{Sat})}=1.85 \mathrm{~V}$ (Typ.) @ $\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}$
- 100% Of The Part Are Dynamically Tested (Note 1)
- Short Circuit Ruggedness $>5 \mu \mathrm{~S} @ 25^{\circ} \mathrm{C}$
- Maximum Junction Temperature: $\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$
- Fast Switching
- Tight Parameter Distribution
- Positive Temperature Co-efficient for Easy Parallel Operating
- Co-Packed With Soft And Fast Recovery Diode
- AEC-Q101 Qualified and PPAP Capable
- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

Applications

- On-board Charger
- Air Conditioner Compressor
- PTC Heater
- Motor Drivers
- Other Automotive Power-Train Applications

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

FGH40T65SPD-F085

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Ratings	Units
$\mathrm{V}_{\text {CES }}$	Collector to Emitter Voltage	650	V
$V_{\text {GES }}$	Gate to Emitter Voltage	± 20	V
	Transient Gate to Emitter Voltage	± 30	V
I_{C}	Collector Current @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	80	A
	Collector Current @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	40	
ICM	Pulsed Collector Current (Note 2)	120	A
I_{F}	Diode Forward Current @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	40	A
	Diode Forward Current @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	20	
$\mathrm{I}_{\text {FM }}$	Pulsed Diode Maximum Forward Current (Note 2)	120	A
P_{D}	Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	267	W
	Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	134	
SCWT	Short Circuit Withstand Time @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	5	us
T_{J}	Operating Junction Temperature	-55 to +175	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55 to +175	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Lead Temp. For soldering Purposes, $1 / 8 \mathrm{~s}$ " from case for 5 seconds	300	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=120 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=20 \Omega$, Inductive Load.
2. Repetitive rating: pulse width limited by max. Junction temperature.

THERMAL CHARACTERISTICS

Symbol	Rating	Max.	Units
$R_{\theta J C}$	Thermal Resistance Junction to Case, for IGBT	0.56	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\theta J C}$	Thermal Resistance Junction to Case, for Diode	1.71	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance Junction to Ambient	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PACKING MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Pacing Type	Quantity
FGH40T65SPD	FGH40T65SPD-F085	TO-247-3LD	Tube	30

ELECTRICAL CHARACTERISTICS OF THE IGBT ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Unit

Collector to Emitter Breakdown Voltage	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$\mathrm{BV}_{\mathrm{CES}}$	650	-	-	V
Temperature Coefficient of Breakdown Voltage	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$\Delta \mathrm{BV}_{\mathrm{CES}} /$ $\Delta \mathrm{T}_{J}$	-	0.6	-	$\mathrm{V} /{ }^{\circ} \mathrm{C}$
Collector Cut-off Current	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CES}}$	$\mathrm{I}_{\mathrm{CES}}$		-	250	$\mu \mathrm{~A}$
G-E Leakage Current	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{GES}}, \mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GES}}$	-	-	± 400	nA

ON CHARACTERISTICS

G-E Threshold Voltage	$\mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GE}(\mathrm{th})}$	4.0	5.5	7.5	V
Collector to Emitter Saturation Voltage	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CE}(\text { sat })}$	-	1.85	2.4	V
	$\mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$		-	2.51	-	

[^0]ELECTRICAL CHARACTERISTICS OF THE IGBT ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted) (continued)(continued)

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
DYNAMIC CHARACTERISTICS						
Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$\mathrm{C}_{\text {ies }}$	-	1518	-	pF
Output Capacitance		$\mathrm{C}_{\text {oes }}$	-	91	-	
Reverse Transfer Capacitance		$\mathrm{C}_{\text {res }}$	-	15	-	

SWITCHING CHARACTERISTICS

Turn-on Delay Time	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A} \\ & \mathrm{Rg}=6 \Omega \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \text { Inductive Load } \end{aligned}$	$\mathrm{T}_{\mathrm{d}(\mathrm{on})}$	-	18	-	ns
Rise Time		T_{r}	-	42	-	
Turn-off Delay Time		$\mathrm{T}_{\mathrm{d} \text { (off) }}$	-	35	-	
Fall Time		T_{f}	-	10	-	
Turn-on Switching Loss		$\mathrm{E}_{\text {on }}$	-	1.16	-	mJ
Turn-off Switching Loss		$\mathrm{E}_{\text {off }}$	-	0.27	-	
Total Switching Loss		$\mathrm{E}_{\text {ts }}$	-	1.43	-	
Turn-on Delay Time	$\begin{aligned} & \begin{array}{l} \mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A} \\ \mathrm{Rg}=6 \Omega \\ \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ \text { Inductive Load } \end{array} \end{aligned}$	$\mathrm{T}_{\mathrm{d}(\mathrm{on})}$	-	16	-	ns
Rise Time		T_{r}	-	40	-	
Turn-off Delay Time		$\mathrm{T}_{\mathrm{d} \text { (off) }}$	-	37	-	
Fall Time		T_{f}	-	11	-	
Turn-on Switching Loss		$\mathrm{E}_{\text {on }}$	-	1.59	-	mJ
Turn-off Switching Loss		$\mathrm{E}_{\text {off }}$	-	0.42	-	
Total Switching Loss		$\mathrm{E}_{\text {ts }}$	-	2.01	-	
Gate Charge Total	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	Q_{g}	-	36	-	nC
Gate to Emitter Charge		Q_{ge}	-	11	-	
Gate to Collector Charge		Q_{gc}	-	12	-	

ELECTRICAL CHARACTERISTICS OF THE DIODE ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Test Conditions		Symbol	Min.	Typ.	Max.	Unit
Diode Forward Voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~A}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$V_{\text {FM }}$	-	2.2	2.7	V
		$\mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$		-	1.9	-	
Reverse Recovery Energy	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=20 \mathrm{~A}, \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$	$\mathrm{E}_{\text {rec }}$	-	51	-	$\mu \mathrm{J}$
Diode Reverse Recovery Time		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	T_{rr}	-	35	-	ns
		$\mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$		-	214	-	
Diode Reverse Recovery Charge		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	Q_{rr}	-	58	-	$\mu \mathrm{C}$
		$\mathrm{T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$		-	776	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 1. Typical Output Characteristics

Figure 3. Typical Saturation Voltage Characteristics

Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

Figure 6. Saturation Voltage vs. V_{GE}

FGH40T65SPD-F085

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 7. Saturation Voltage vs. V_{GE}

Figure 9. Capacitance Characteristics

Figure 11. SOA Characteristics

Figure 8. Saturation Voltage vs. V_{GE}

Figure 10. Gate Charge Characteristics

Figure 12. Turn off Switching SOA Characteristics

FGH40T65SPD-F085

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 13. Turn-on Characteristics vs. Gate Resistance

Figure 15. Turn-on Characteristics vs. Collector Current

Figure 17. Switching Loss vs Gate Resistance

Figure 14. Turn-off Characteristics vs. Gate Resistance

Figure 16. Turn-off Characteristics vs. Collector Current

Figure 18. Switching Loss vs Collector Current

FGH40T65SPD-F085

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 19. Forward Characteristics

Figure 21. Stored Charge

Figure 23. Reverse Recovery Current

Figure 20. Reverse Current

Figure 22. Reverse Recovery Time

FGH40T65SPD-F085

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 24. Transient Thermal Impedance of IGBT

Figure 25. Transient Thermal Impedance of Diode

TO-247-3LD SHORT LEAD CASE 340CK ISSUE A

DATE 31 JAN 2019

NOTES: UNLESS OTHERWISE SPECIFIED.
A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
B. ALL DIMENSIONS ARE IN MILLIMETERS.
C. DRAWING CONFORMS TO ASME Y14.5-2009.
D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

	AYWWZZ XXXXXXX XXXXXXX -
XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
ZZ	$=$ Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versins are

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: DYNAMIC CHARACTERISTICS

