IGBT

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss.

Features

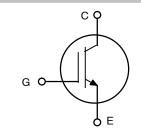
- Low Saturation Voltage using Trench with Field Stop Technology
- Low Switching Loss Reduces System Power Dissipation
- Optimized for High Speed Switching
- 5 μs Short-Circuit Capability
- These are Pb-Free Devices

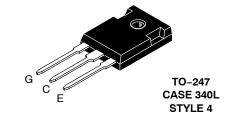
Typical Applications

- Power Factor Correction
- Solar Inverters
- Uninterruptable Power Supply (UPS)

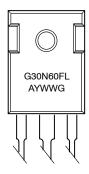
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V _{CES}	600	V
Collector current @ Tc = 25°C @ Tc = 100°C	I _C	60 30	A
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	120	Α
Diode Forward Current @ T _C = 25°C @ T _C = 100°C	I _F	60 30	A
Diode Pulsed Current T _{pulse} Limited by T _{Jmax}	I _{FM}	120	Α
Short–circuit withstand time V_{GE} = 15 V, V_{CE} = 300 V, $T_{J} \le +150^{\circ}C$	t _{SC}	5	μs
Gate-emitter voltage Transient Gate Emitter Voltage (t _p = 5 μs, D < 0.010)	V _{GE}	± 20 ± 30	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	250 67	W
Operating junction temperature range	TJ	–55 to +150	°C
Storage temperature range	T _{stg}	-55 to +150	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®


http://onsemi.com

30 A, 600 V V_{CEsat} = 1.65 V

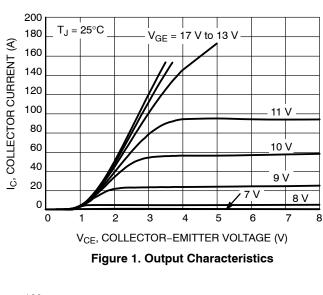
MARKING DIAGRAM

A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTG30N60FLWG	TO-247 (Pb-Free)	30 Units / Rail


THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ heta JC}$	0.486	°C/W
Thermal resistance junction-to-ambient	$R_{ heta JA}$	40	°C/W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC						
Collector-emitter breakdown voltage, gate-emitter short-circuited	$V_{GE} = 0 \text{ V, I}_{C} = 500 \mu\text{A}$	V _{(BR)CES}	600	_	-	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A V _{GE} = 15 V, I _C = 30 A, T _J = 150°C	V _{CEsat}	1.4 -	1.65 2.0	1.9 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_{C} = 200 \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	V _{GE} = 0 V, V _{CE} = 600 V V _{GE} = 0 V, V _{CE} = 600 V, T _J = 150°C	I _{CES}	-	_ _	0.2 2	mA
Gate leakage current, collector-emitter short-circuited	V _{GE} = 20 V , V _{CE} = 0 V	I _{GES}	-	_	100	nA
DYNAMIC CHARACTERISTIC	•	•		•		
Input capacitance		C _{ies}	-	4200	-	pF
Output capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	130	-	1
Reverse transfer capacitance	1	C _{res}	-	110	-	1
Gate charge total		Q_g	-	170	-	nC
Gate to emitter charge	V_{CE} = 480 V, I_{C} = 30 A, V_{GE} = 15 V	Q _{ge}	_	34	-	1
Gate to collector charge]	Q _{gc}	-	83	-]
SWITCHING CHARACTERISTIC, INDUC	TIVE LOAD	•		•		
Turn-on delay time		t _{d(on)}	-	83	-	ns
Rise time	1	t _r	-	31	-	1
Turn-off delay time	Т _Ј = 25°С	t _{d(off)}	_	170	-	1
Fall time	$V_{CC} = 400 \text{ V, I}_{C} = 30 \text{ A}$ $R_{g} = 10 \Omega$	t _f	_	80	-	1
Turn-on switching loss	V _{GE} = 0 V/ 15 V	E _{on}	-	0.7	-	mJ
Turn-off switching loss]	E _{off}	-	0.28	-	
Total switching loss]	E _{ts}	-	0.98	-	
Turn-on delay time		t _{d(on)}	-	81	-	ns
Rise time]	t _r	-	32	-]
Turn-off delay time	T _J = 150°C	t _{d(off)}	-	180	-	
Fall time	$V_{CC} = 400 \text{ V}, I_{C} = 30 \text{ A}$ $R_{g} = 10 \Omega$	t _f	-	110	-	<u> </u>
Turn-on switching loss	V _{GE} = 0 V/ 15 V	E _{on}	ı	0.82	-	mJ
Turn-off switching loss		E _{off}	ı	0.63	-	
Total switching loss]	E _{ts}	-	1.45	-	

TYPICAL CHARACTERISTICS

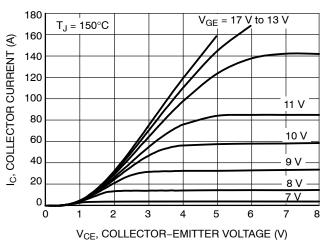
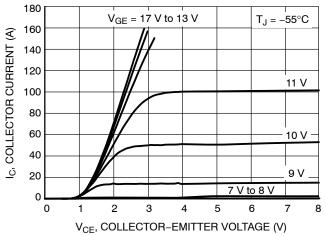



Figure 2. Output Characteristics

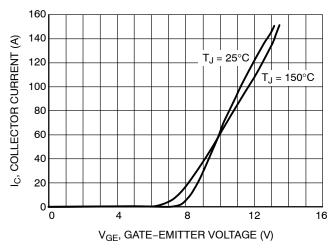
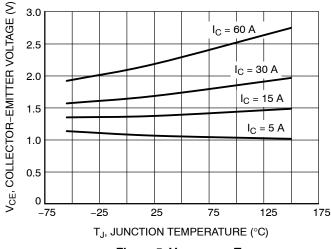



Figure 3. Output Characteristics

Figure 4. Typical Transfer Characteristics

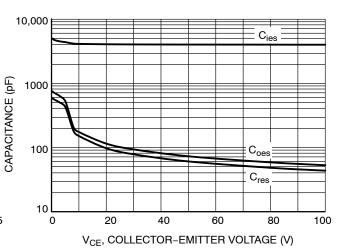


Figure 5. V_{CE(sat)} vs. T_J

Figure 6. Typical Capacitance

TYPICAL CHARACTERISTICS

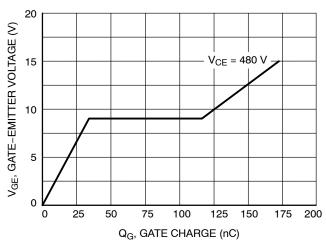


Figure 7. Typical Gate Charge

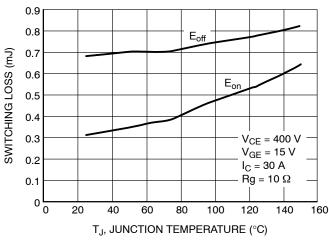


Figure 8. Switching Loss vs. Temperature

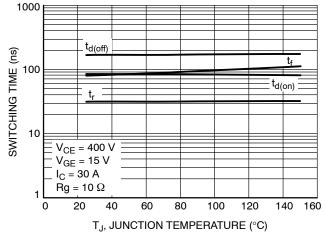


Figure 9. Switching Time vs. Temperature

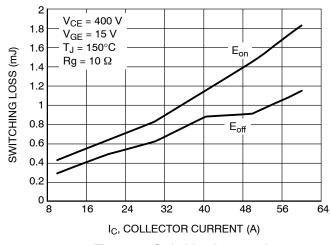


Figure 10. Switching Loss vs. I_C

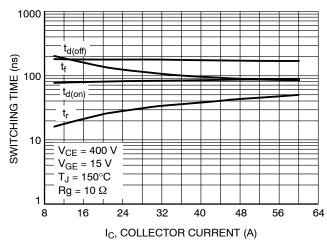
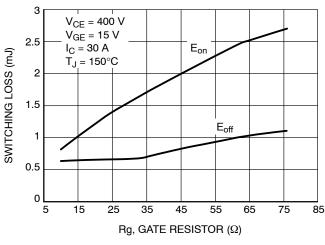
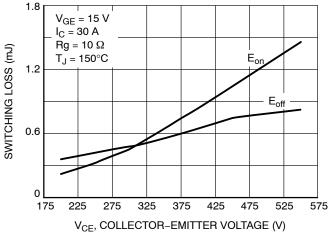



Figure 11. Switching Time vs. I_C

TYPICAL CHARACTERISTICS


1000

1000 t_{d(off)} SWITCHING TIME (ns) 100 10 V_{CE} = 400 V $V_{GE}^{-} = 15 \text{ V}$ I_C = 30 A $T_J = 150^{\circ}C$ 5 15 25 35 45 65 Rg, GATE RESISTOR (Ω)

Figure 12. Switching Loss vs. Rg

Figure 13. Switching Time vs. Rg

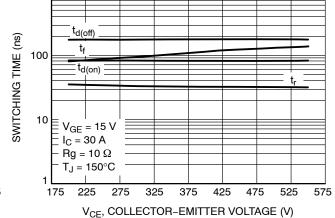
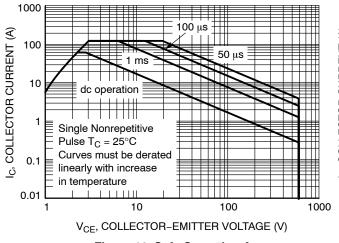



Figure 14. Switching Loss vs. V_{CE}

Figure 15. Switching Time vs. V_{CE}

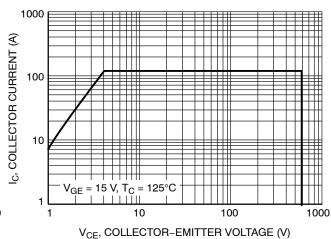


Figure 16. Safe Operating Area

Figure 17. Reverse Bias Safe Operating Area

TYPICAL CHARACTERISTICS

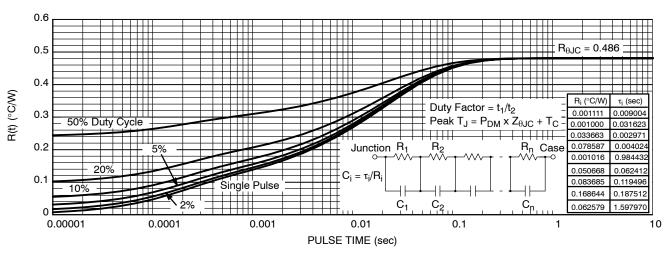


Figure 18. IGBT Transient Thermal Impedance

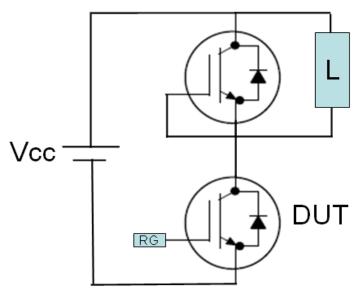


Figure 19. Test Circuit for Switching Characteristics

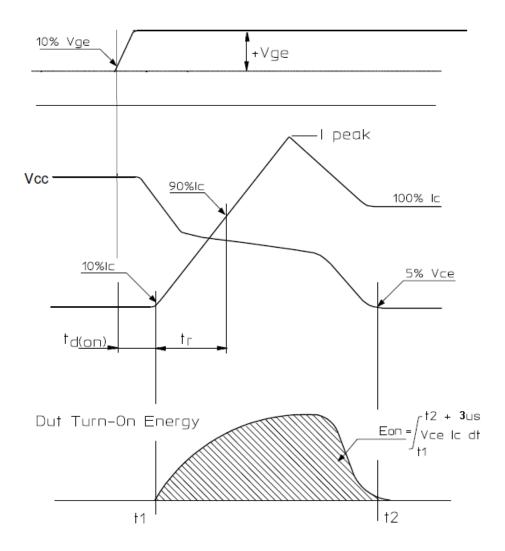


Figure 20. Definition of Turn On Waveform

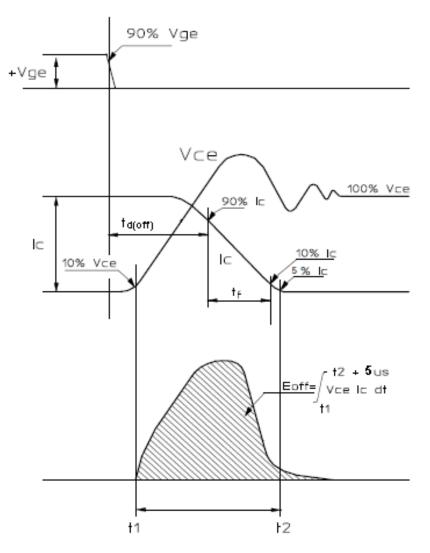
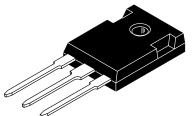
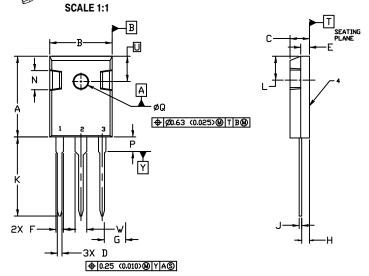
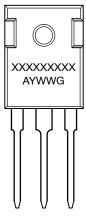



Figure 21. Definition of Turn Off Waveform


TO-247 CASE 340L ISSUE G

DATE 06 OCT 2021


NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INC	CHES	
DIM	MIN.	MAX.	MIN.	MAX.	
Α	20.32	21.08	0.800	0.830	
В	15.75	16.26	0.620	0.640	
С	4.70	5.30	0.185	0.209	
D	1.00	1.40	0.040	0.055	
Ε	1.90	2.60	0.075	0.102	
F	1.65	2.13	0.065	0.084	
G	5.45 BSC		0.215 BSC		
Н	1.50	2.49	0.059	0.098	
J	0.40	0.80	0.016	0.031	
К	19.81	20.83	0.780	0.820	
L	5.40	6.20	0.212	0.244	
N	4.32	5.49	0.170	0.216	
Р		4.50		0.177	
Q	3.55	3.65	0.140	0.144	
U	6.15 BSC		0.242	BSC	
W	2.87	3.12	0.113	0.123	

GENERIC MARKING DIAGRAM*

STYLE 1:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE
4.	DRAIN

STYLE 2:
PIN 1. ANODE
2. CATHODE (S)
3. ANODE 2
4. CATHODES (S)

STYLE 3:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 4:
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

XXXXX = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

 STYLE 5:
 STYLE 6:

 PIN 1. CATHODE
 PIN 1. MAIN TERMINAL 1

 2. ANODE
 2. MAIN TERMINAL 2

 3. GATE
 3. GATE

 4. ANODE
 4. MAIN TERMINAL 2

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB15080C Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative