N-Channel Power MOSFET 500 V, 2.7 Ω

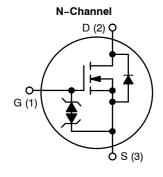
Features

- Low ON Resistance
- Low Gate Charge
- ESD Diode-Protected Gate
- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	500	V
Continuous Drain Current $R_{\theta JC}$	I _D	3.0	Α
Continuous Drain Current R ₀ JC, T _A = 100°C	I _D	1.9	Α
Pulsed Drain Current, V _{GS} @ 10 V	I _{DM}	12	Α
Power Dissipation $R_{\theta JC}$	P _D	61	W
Gate-to-Source Voltage	V _{GS}	±30	V
Single Pulse Avalanche Energy, I _D = 3.4 A	E _{AS}	120	mJ
ESD (HBM) (JESD22-A114)	V _{esd}	2800	V
Peak Diode Recovery	dv/dt	4.5 (Note 1)	V/ns
Continuous Source Current (Body Diode)	I _S	3.4	Α
Maximum Temperature for Soldering Leads	T _L	260	°C
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. $I_D \leq 3.4$ A, $di/dt \leq 200$ A/ μ s, $V_{DD} \leq BV_{DSS}$, $T_J \leq 150^{\circ}C$.

ON Semiconductor®

http://onsemi.com

V _{DSS}	R _{DS(on)} (MAX) @ 1.5 A	
500 V	2.7 Ω	

IPAK CASE 369D STYLE 2

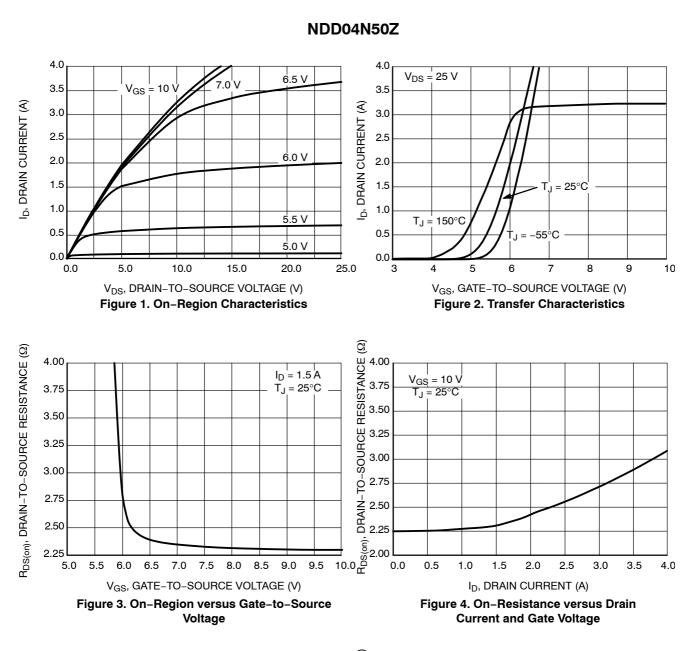
DPAK CASE 369AA STYLE 2

MARKING AND ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL RESISTANCE

Parameter			Value	Unit
Junction-to-Case (Drain)	NDD04N50Z	$R_{ heta JC}$	2.0	°C/W
Junction-to-Ambient Steady State	(Note 3) NDD04N50Z (Note 2) NDD04N50Z-1	$R_{\theta JA}$	40 80	


^{2.} Insertion mounted

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	_			•	•	•
Drain-to-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$		500			V
Breakdown Voltage Temperature Coefficient	$\Delta BV_{DSS}/$ ΔT_{J}	Reference to 25°C I _D = 1 mA) ,		0.6		V/°C
Drain-to-Source Leakage Current	I _{DSS}	V 500 V V 0 V	25°C			1.0	μΑ
		V _{DS} = 500 V, V _{GS} = 0 V	150°C			50	1
Gate-to-Source Forward Leakage	I _{GSS}	V _{GS} = ±20 V				±10	μΑ
ON CHARACTERISTICS (Note 4)		•					-
Static Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 1.9$	5 A		2.3	2.7	Ω
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 50$	μΑ	3.0		4.5	V
Forward Transconductance	9FS	V _{DS} = 15 V, I _D = 1.5	5 A		2.1		S
DYNAMIC CHARACTERISTICS	•	•			•	•	
Input Capacitance (Note 5)	C _{iss}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		246	308	370	pF
Output Capacitance (Note 5)	C _{oss}			33	43	53	
Reverse Transfer Capacitance (Note 5)	C _{rss}			7.0	9.0	11	
Total Gate Charge (Note 5)	Qg	V _{DD} = 250 V, I _D = 3.4 A,		6.0	12	18	nC
Gate-to-Source Charge (Note 5)	Q_{gs}			1.3	2.6	4.0	
Gate-to-Drain ("Miller") Charge (Note 5)	Q_{gd}	V _{GS} = 10 V			6.1	7.0	1
Plateau Voltage	V_{GP}				6.6		V
Gate Resistance	R_g			1.8	5.4	16.2	Ω
RESISTIVE SWITCHING CHARACTERISTI	cs	_			_	_	_
Turn-On Delay Time	t _{d(on)}				9.0		ns
Rise Time	t _r	V _{DD} = 250 V, I _D = 3.4	4 A,		9.0		
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 10 \text{ V}, R_G = 5 \Omega$			16		1
Fall Time	t _f				10		
SOURCE-DRAIN DIODE CHARACTERIST	ICS (T _C = 25	°C unless otherwise noted)					
Diode Forward Voltage	V _{SD}	I _S = 3.4 A, V _{GS} = 0	V			1.6	V
Reverse Recovery Time	t _{rr}	V _{GS} = 0 V, V _{DD} = 30) V		240		ns
Reverse Recovery Charge	Q _{rr}	$I_S = 3.4 \text{ A}, \text{ di/dt} = 100$			0.9		μС

Pulse Width ≤ 380 μs, Duty Cycle ≤ 2%.
 Guaranteed by design.

^{3.} Surface mounted on FR4 board using 1'' sq. pad size, (Cu area = 1.127 in sq [2 oz] including traces).

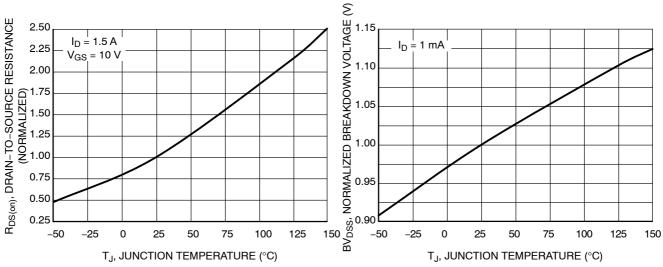


Figure 5. On–Resistance Variation with Temperature

Figure 6. BV_{DSS} Variation with Temperature

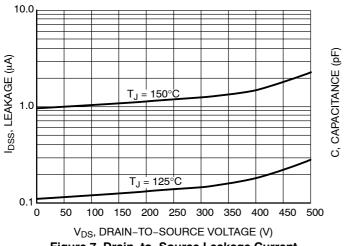


Figure 7. Drain-to-Source Leakage Current versus Voltage

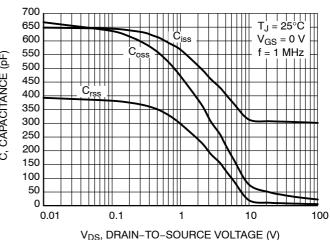


Figure 8. Capacitance Variation

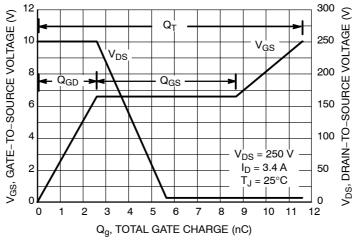


Figure 9. Gate-to-Source Voltage and Drain-to-Source Voltage versus Total Charge

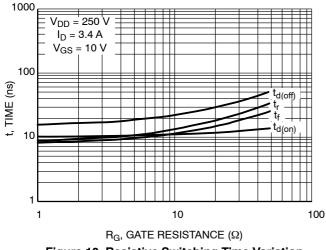


Figure 10. Resistive Switching Time Variation versus Gate Resistance

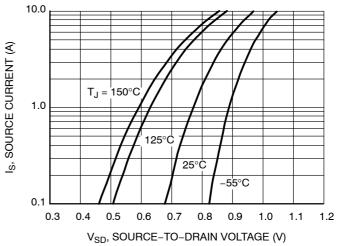


Figure 11. Diode Forward Voltage versus Current

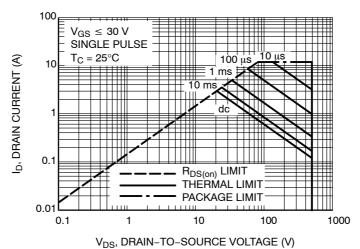


Figure 12. Maximum Rated Forward Biased Safe Operating Area NDD04N50Z

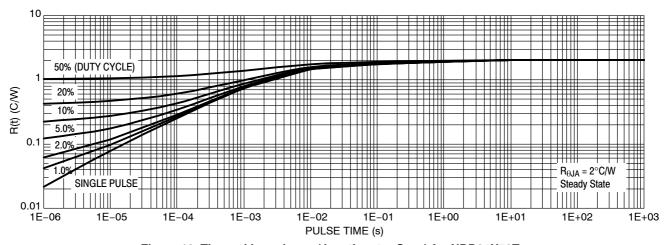


Figure 13. Thermal Impedance (Junction-to-Case) for NDD04N50Z

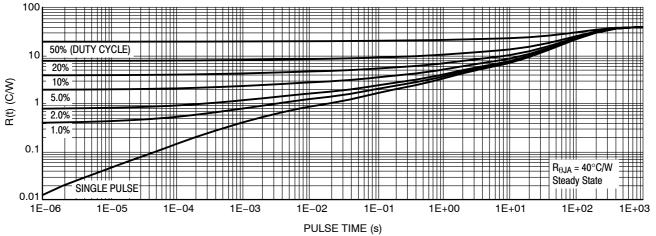


Figure 14. Thermal Impedance (Junction-to-Ambient) for NDD04N50Z

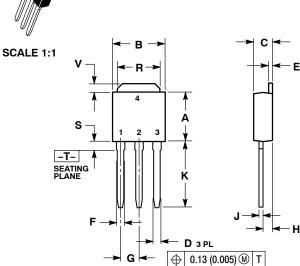
ORDERING INFORMATION

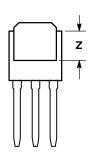
Order Number	Package	Shipping [†]
NDD04N50Z-1G	IPAK (Pb-Free)	75 Units / Rail
NDD04N50ZT4G	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS

A = Location Code


Y = Year WW = Work Week G = Pb-Free Package


MECHANICAL CASE OUTLINE

DATE 15 DEC 2010

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
V	0.035	0.050	0.89	1.27
Z	0.155		3.93	

MARKING DIAGRAMS

1:	s
BASE	
COLLECTOR	
EMITTER	
COLLECTOR	
	BASE COLLECTOR EMITTER

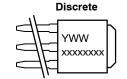
STYLE 5: PIN 1. GATE

2. ANODE CATHODE

ANODE

STYLE 2: PIN 1. GATE 2. DRAIN SOURCE 3 DRAIN

STYLE 6: PIN 1. MT1 2. MT2 3. GATE


MT2

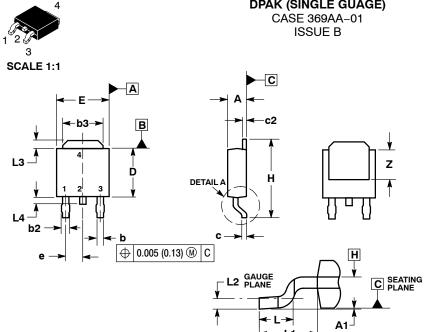
STYLE 3: PIN 1. ANODE 2. CATHODE 3 ANODE 4. CATHODE

STYLE 7: PIN 1. GATE 2. COLLECTOR

3. EMITTER COLLECTOR STYLE 4: PIN 1. CATHODE ANODE
 GATE

4. ANODE

WW



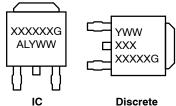
xxxxxxxxx = Device Code Α = Assembly Location IL = Wafer Lot Υ = Year

= Work Week

DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	IPAK (DPAK INSERTION MOUNT)		PAGE 1 OF 1	

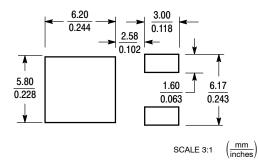
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DETAIL A ROTATED 90° CW **DATE 03 JUN 2010**


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74 REF	
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	


STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE STYLE 1: PIN 1. BASE STYLE 2: PIN 1. GATE STYLE 3: PIN 1. ANODE 2. COLLECTOR 3. EMITTER 2. CATHODE 3. ANODE 2. DRAIN 3. SOURCE 4. COLLECTOR 4. DRAIN CATHODE STYLE 5: STYLE 6: STYLE 7: PIN 1. GATE 2. ANODE 3. CATHODE PIN 1. GATE 2. COLLECTOR PIN 1. MT1 2. MT2 3. GATE 3. EMITTER 4. ANODE COLLECTOR

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

^{*}This information is generic. Please refer to device data sheet for actual part marking.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Sh

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative