ON Semiconductor

Is Now

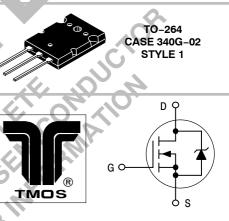
Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

TMOS E-FET [™] Power Field Effect Transistor N-Channel Enhancement-Mode Silicon Gate

This advanced TMOS power FET is designed to withstand high energy in the avalanche and commutation modes. This new energy efficient design also offers a drain-to-source diode with fast recovery time. Designed for high voltage, high speed switching applications in power supplies, converters, PWM motor controls, and other inductive loads. The avalanche energy capability is specified to eliminate the guesswork in designs where inductive loads are switched and offer additional safety margin against unexpected voltage transients.


- Avalanche Energy Specified
- Diode is Characterized for Use in Bridge Circuits
- I_{DSS} and V_{DS(on)} Specified at Elevated Temperature

ON Semiconductor®

http://onsemi.com

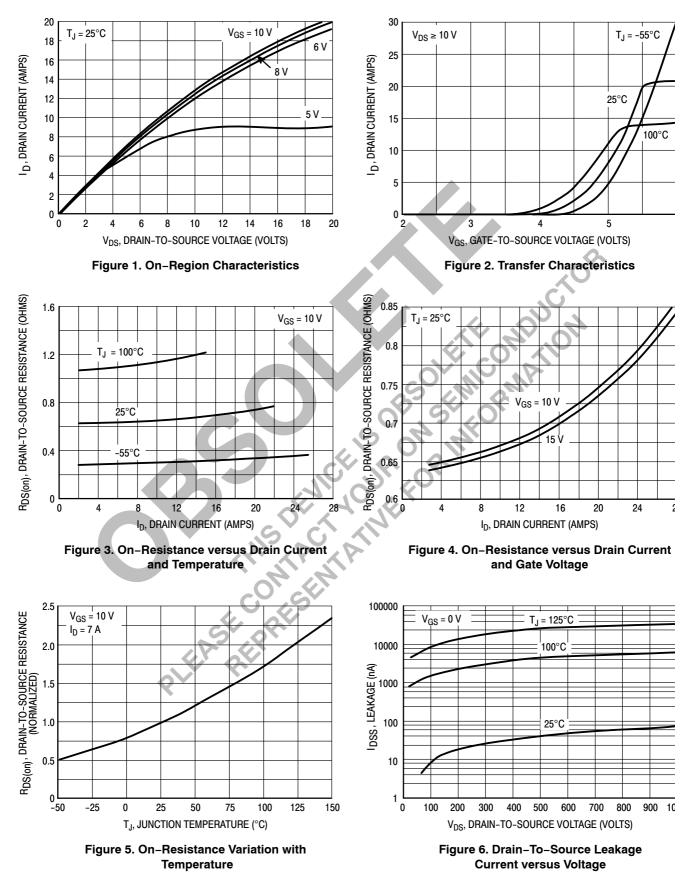
TMOS POWER FET 14 AMPERES, 1000 VOLTS $R_{DS(on)} = 0.80 \ \Omega$

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	1000	Vdc
Drain-to-Gate Voltage (R _{GS} = 1.0 MΩ)	V _{DGR}	1000	Vdc
Gate-to-Source Voltage — Continuous — Single Pulse (t _p ≤ 50 μs)	V _{GS} V _{GSM}	±20 ±40	Vdc Vpk
Drain Current — Continuous — Continuous @ $T_C = 100^{\circ}C$ — Single Pulse ($t_p \le 10 \ \mu$ s)	I _D I _D I _{DM}	14 8.7 49	Adc Apk
Total Power Dissipation Derate above 25°C	PD	300 2.4	Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy — Starting T _J = 25°C (V _{DD} = 100 Vdc, V _{GS} = 10 Vdc, Peak I _L = 14 Apk, L = 10 mH, R _G = 25 Ω)	E _{AS}	980	mJ
Thermal Resistance — Junction to Case — Junction to Ambient	${\sf R}_{ heta {\sf JC}} \ {\sf R}_{ heta {\sf JA}}$	0.42 30	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

ייט הסבו

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.


Preferred devices are Motorola recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

OFF CHARACTERISTICS Drain-to-Source Breakdown Voltage ($V_{GS} = 0, I_D = 0.250 \text{ mAdc}$) Temperature Coefficient (Positive) Zero Gate Voltage Drain Current ($V_{DS} = 1000 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}$) ($V_{DS} = 1000 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125°C$) Gate-Body Leakage Current ($V_{GS} = \pm 20 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$) ON CHARACTERISTICS (1) Gate Threshold Voltage ($V_{DS} = V_{GS}, I_D = 0.250 \text{ mAdc}$) Threshold Temperature Coefficient (Negative) Static Drain-Source On-Resistance ($V_{GS} = 10 \text{ Vdc}, I_D = 7.0 \text{ Adc}$) Drain-to-Source On-Voltage ($V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}$) ($V_{GS} = 10 \text{ Vdc}, I_D = 7.0 \text{ Adc}, T_J = 125°C$) Forward Transconductance ($V_{DS} \ge 15 \text{ Vdc}, I_D = 7.0 \text{ Adc}$) DYNAMIC CHARACTERISTICS Input Capacitance Output Capacitance Qutput Capacitance Qutput Capacitance SWITCHING CHARACTERISTICS (2) Turn-On Delay Time Rise Time ($V_{DD} = 500 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, R_G = 9.1 \Omega$) Fall Time ($V_{DD} = 500 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, R_G = 9.1 \Omega$)	V(BR)DSS	1000 			Vdc V/°C μAdc nAdc Vdc mV/°C Ohm Vdc mhos
	I _{DSS} I _{GSS} V _{GS} (th) R _{DS} (on) V _{DS} (on) G _{FS} C _{iss} C _{oss} C _{rss}	 2.0 		100 100 4.0 0.8 13.4	V/°C μAdc nAdc Vdc mV/°C Ohm Vdc Mhos
Zero Gate Voltage Drain Current $(V_{DS} = 1000 Vdc, V_{GS} = 0 Vdc)$ $(V_{DS} = 1000 Vdc, V_{GS} = 0 Vdc, T_J = 125°C)$ Gate -Body Leakage Current ($V_{GS} = \pm 20 Vdc, V_{DS} = 0 Vdc$) ON CHARACTERISTICS (1) Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 0.250 \text{ mAdc})$ Threshold Temperature Coefficient (Negative)Static Drain-Source On-Resistance ($V_{GS} = 10 Vdc, I_D = 7.0 \text{ Adc}$)Drain-to-Source On-Voltage $(V_{GS} = 10 Vdc, I_D = 7.0 \text{ Adc}, T_J = 125°C)$ Forward Transconductance ($V_{DS} \ge 15 Vdc, I_D = 7.0 \text{ Adc}$) DYNAMIC CHARACTERISTICS Input CapacitanceOutput Capacitance Output Capacitance SWITCHING CHARACTERISTICS (2) Turn-On Delay Time Rise TimeRise Time Turn-Off Delay TimeFall Time	I _{GSS} V _{GS} (th) R _{DS} (on) V _{DS} (on) G _{FS} C _{iss} C _{rss}			100 100 4.0 0.8 13.4	μAdc nAdc Vdc mV/°C Ohm Vdc mhos
	I _{GSS} V _{GS} (th) R _{DS} (on) V _{DS} (on) G _{FS} C _{iss} C _{rss}		9.0 0.67 12.3 - 12 7230 462	100 100 4.0 0.8 13.4	nAdc Vdc mV/°C Ohm Vdc mhos
DN CHARACTERISTICS (1)Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 0.250 \text{ mAdc})$ Threshold Temperature Coefficient (Negative)Static Drain–Source On–Resistance ($V_{GS} = 10 \text{ Vdc}, I_D = 7.0 \text{ Adc}$)Drain–to–Source On–Voltage $(V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc})$ $(V_{GS} = 10 \text{ Vdc}, I_D = 7.0 \text{ Adc}, T_J = 125°C$)Forward Transconductance ($V_{DS} \ge 15 \text{ Vdc}, I_D = 7.0 \text{ Adc}$)DYNAMIC CHARACTERISTICSInput Capacitance Output CapacitanceQutput Capacitance Reverse Transfer CapacitanceSWITCHING CHARACTERISTICS (2)Turn–On Delay Time Rise TimeRise Time Turn–Off Delay TimeRall Time	V _{GS(th)} R _{DS(on)} V _{DS(on)} GFS C _{iss} C _{oss} C _{rss}		9.0 0.67 12.3 - 12 7230 462	4.0 — 0.8 13.4	Vdc mV/°C Ohm Vdc mhos
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 0.250 \text{ mAdc})$ Threshold Temperature Coefficient (Negative)Static Drain–Source On–Resistance ($V_{GS} = 10 \text{ Vdc}, I_D = 7.0 \text{ Adc}$)Drain–to–Source On–Voltage $(V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc})$ $(V_{GS} = 10 \text{ Vdc}, I_D = 7.0 \text{ Adc}, T_J = 125°C)$ Forward Transconductance ($V_{DS} \ge 15 \text{ Vdc}, I_D = 7.0 \text{ Adc}$) DYNAMIC CHARACTERISTICS Input CapacitanceOutput Capacitance Output Capacitance SWITCHING CHARACTERISTICS (2) Turn–On Delay Time Rise TimeRise Time Turn–Off Delay TimeFall Time	R _{DS(on)} V _{DS(on)} GFS C _{iss} C _{oss} C _{rss}		9.0 0.67 12.3 - 12 7230 462		mV/°C Ohm Vdc mhos
	R _{DS(on)} V _{DS(on)} GFS C _{iss} C _{oss} C _{rss}		9.0 0.67 12.3 - 12 7230 462		mV/°C Ohm Vdc mhos
$\begin{array}{c} \mbox{Drain-to-Source On-Voltage} \\ (V_{GS} = 10 \ Vdc, \ I_D = 14 \ Adc) \\ (V_{GS} = 10 \ Vdc, \ I_D = 7.0 \ Adc, \ T_J = 125^{\circ}C) \end{array}$ Forward Transconductance (V_{DS} \geq 15 Vdc, \ I_D = 7.0 \ Adc) $\hline \mbox{DYNAMIC CHARACTERISTICS} \\ \mbox{Input Capacitance} \\ \mbox{Output Capacitance} \\ \mbox{Output Capacitance} \\ \mbox{Reverse Transfer Capacitance} \\ \hline \mbox{SWITCHING CHARACTERISTICS (2)} \\ \hline \mbox{Turn-On Delay Time} \\ \mbox{Rise Time} \\ \mbox{Turn-Off Delay Time} \\ \mbox{Fall Time} \\ \hline \mbox{Fall Time} \\ \hline \mbox{V}_{GS} = 10 \ Vdc, \\ \mbox{R}_{G} = 9.1 \ \Omega) \\ \hline \mbox{Fall Time} \\ \hline \mbox{V}_{CS} = 10 \ Vdc, \\ \mbox{R}_{S} = 9.1 \ \Omega) \\ \hline \mbox{Fall Time} \\ \hline \mbox{V}_{SS} = 10 \ Vdc, \\ \mbox{R}_{SS} = 10 \ Vd$	V _{DS(on)} gFS C _{iss} C _{oss} C _{rss}		12.3 12 7230 462	13.4	Vdc mhos
	GFS C _{iss} C _{oss} C _{rss}	- - 10			mhos
DYNAMIC CHARACTERISTICS Input Capacitance Output Capacitance Reverse Transfer Capacitance SWITCHING CHARACTERISTICS (2) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	C _{iss} C _{oss} C _{rss}		7230 462		i i
$\begin{tabular}{ c c c c c } \hline Input Capacitance & (V_{DS} = 25 \ Vdc, \ V_{GS} = 0 \ Vdc, \ f = 1.0 \ MHz) \\ \hline Reverse Transfer Capacitance & \\ \hline \hline Reverse Transfer Capacitance & \\ \hline \hline SWITCHING CHARACTERISTICS (2) & \\ \hline Turn-On Delay Time & (V_{DD} = 500 \ Vdc, \ I_D = 14 \ Adc, \ V_{GS} = 10 \ Vdc, \ R_G = 9.1 \ \Omega) & \\ \hline Fall Time & \\ \hline \hline \hline \end{array}$	C _{oss} C _{rss}	ON CON	462	> 	pF
Output Capacitance $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$ Reverse Transfer Capacitance $f = 1.0 \text{ MHz}$ SWITCHING CHARACTERISTICS (2) $(V_{DD} = 500 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, R_G = 9.1 \Omega)$ Turn-Off Delay Time $R_G = 9.1 \Omega$ Fall Time $(V_{DD} = 500 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, V_{GS} = 10 \text{ Vdc}, I_D = 14 \text{ Adc}, I_D = 14 Ad$	C _{oss} C _{rss}	- The second	462		pF
f = 1.0 MHz Reverse Transfer Capacitance $f = 1.0 MHz$ SWITCHING CHARACTERISTICS (2) Turn-On Delay Time Rise Time (VDD = 500 Vdc, ID = 14 Adc, VGS = 10 Vdc, RG = 9.1 Q) Fall Time	C _{oss} C _{rss}	R			-
Reverse Transfer CapacitanceSWITCHING CHARACTERISTICS (2)Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall Time		-TAN	61		1
$\begin{tabular}{ c c c c c } \hline Turn-On Delay Time & (V_{DD} = 500 Vdc, I_D = 14 Adc, V_{GS} = 10 Vdc, R_G = 9.1 Q) \\ \hline Fall Time & (V_{DD} = 500 Vdc, I_D = 14 Adc, V_{SS} = 10 Vdc, R_S = 10 Vdc, R_S = 10 Vdc, R_S = 9.1 Q) \\ \hline \end{array}$		<u></u>			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	talan				
$\begin{tabular}{c} V_{GS} = 10 \ Vdc, \\ R_G = 9.1 \ \Omega \end{tabular} \end{tabular} \end{tabular} \end{tabular}$	-u(on)	-	49		ns
$\begin{array}{c c} Turn-Off Delay Time \\ \hline \\ Fall Time \\ \hline \\ \end{array} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\$	t _r	_	98		
	t _{d(off)}	_	132		
Gate Charge	Ot _f		83		
	Q _T	_	142		nC
(See Figure 8) (V _{DS} = 500 Vdc, I _D = 14 Adc,	Q ₁	_	34		-
V _{GS} = 10 Vdc)	Q ₂	_	46		-
	Q ₃		56		
SOURCE-DRAIN DIODE CHARACTERISTICS					
Forward On–Voltage $(I_S = 14 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 14 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V _{SD}		1.36 1.26	1.5	Vdc
Reverse Recovery Time	t _{rr}	_	831	_	ns
(See Figure 14) (I _S = 14 Adc, V _{GS} = 0 Vdc,	ta		364		-
$dI_{S}/dt = 100 \text{ A/}\mu\text{s}$	t _b		467		-
Reverse Recovery Stored Charge	Q _{RR}		15.3		μC
NTERNAL PACKAGE INDUCTANCE					.1
Internal Drain Inductance (Measured from the drain lead 0.25" from package to center of die)	L _D	_	4.5		nH
Internal Source Inductance (Measured from the source lead 0.25" from package to source bond pad)	Ls		13		nH

Pulse Test: Pulse Width ≤ ③00 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperature.

TYPICAL ELECTRICAL CHARACTERISTICS

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals (Δt) are determined by how fast the FET input capacitance can be charged by current from the generator.

The published capacitance data is difficult to use for calculating rise and fall because drain-gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current ($I_{G(AV)}$) can be made from a rudimentary analysis of the drive circuit so that

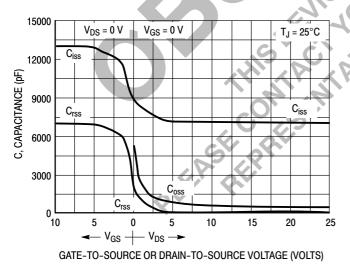
 $t = Q/I_{G(AV)}$

During the rise and fall time interval when switching a resistive load, V_{GS} remains virtually constant at a level known as the plateau voltage, V_{SGP} . Therefore, rise and fall times may be approximated by the following:

 $t_r = Q_2 \times R_G / (V_{GG} - V_{GSP})$

 $t_f = Q_2 \times R_G / V_{GSP}$

where


 V_{GG} = the gate drive voltage, which varies from zero to V_{GG}

 R_G = the gate drive resistance

and Q_2 and V_{GSP} are read from the gate charge curve.

During the turn-on and turn-off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:

$$\begin{split} t_{d(on)} &= R_G \; C_{iss} \; \text{In} \; [V_{GG}/(V_{GG} - V_{GSP})] \\ t_{d(off)} &= R_G \; C_{iss} \; \text{In} \; (V_{GG}/V_{GSP}) \end{split}$$

The capacitance (C_{iss}) is read from the capacitance curve at a voltage corresponding to the off-state condition when calculating $t_{d(on)}$ and is read at a voltage corresponding to the on-state when calculating $t_{d(off)}$.

At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.

The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.

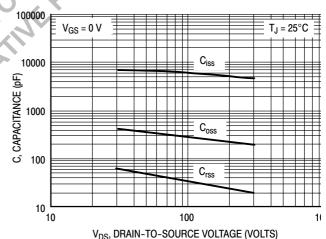
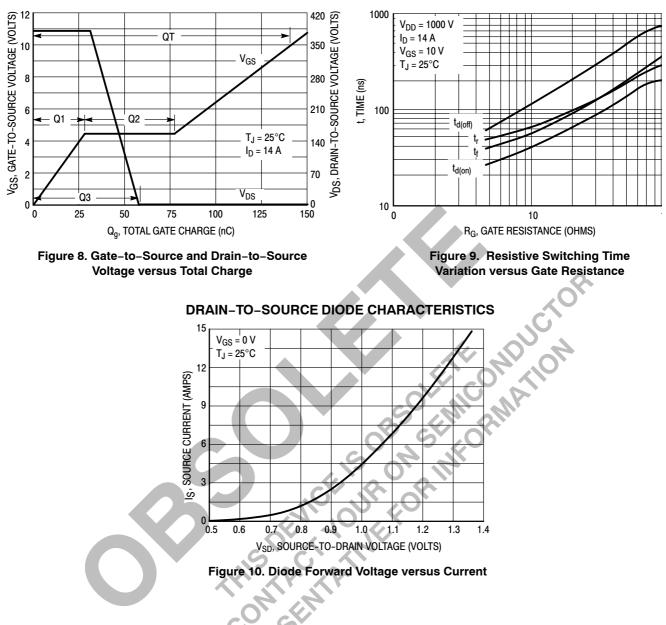
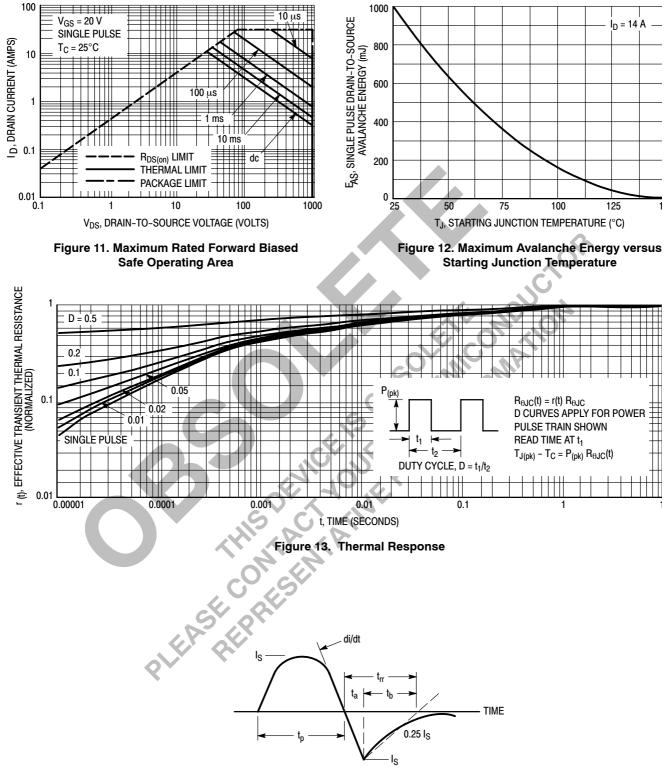



Figure 7b. High Voltage Capacitance Variation

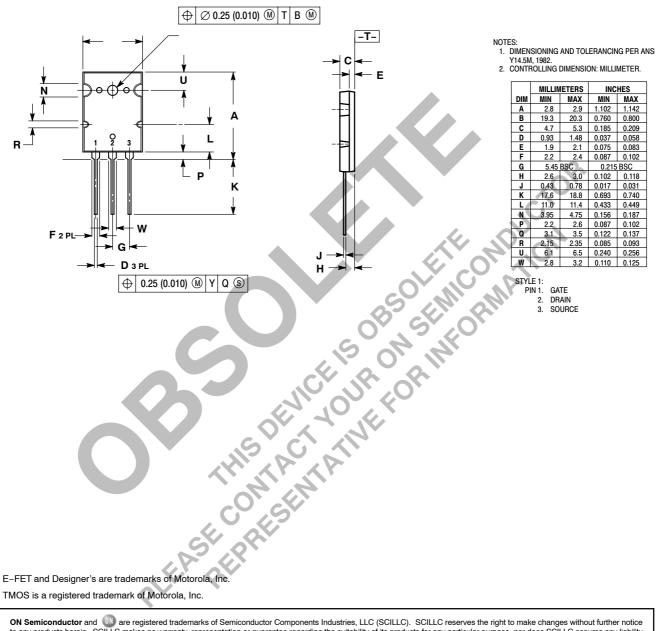
SAFE OPERATING AREA


The Forward Biased Safe Operating Area curves define the maximum simultaneous drain-to-source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature (T_C) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance–General Data and Its Use."

Switching between the off-state and the on-state may traverse any load line provided neither rated peak current (I_{DM}) nor rated voltage (V_{DSS}) is exceeded and the transition time (t_r,t_f) do not exceed 10 μ s. In addition the total power averaged over a complete switching cycle must not exceed (T_{J(MAX)} – T_C)/(R_{θJC}).

A Power MOSFET designated E-FET can be safely used in switching circuits with unclamped inductive loads. For reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non-linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E-FETs can withstand the stress of drain-to-source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_D), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 12). Maximum energy at currents below rated continuous I_D can safely be assumed to equal the values indicated.


SAFE OPERATING AREA

PACKAGE DIMENSIONS

CASE 340G-02 TO-264 **ISSUE E**

TMOS is a registered trademark of Motorola, Inc.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent or any liability nor the rights of others. SCILIC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are specified to the SCILIC of the S intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative