NL3S588

USB 2.0-Capable Ultra-Low THD DPDT Switch

The NL3S588 is a single supply, bidirectional, double-pole/ double-throw (DPDT) switch suitable for both hi-fidelity audio and high-speed data applications.

The NL3S588 features ultra-low distortion, high OFF-Isolation analog switches that can pass analog signals that are positive and negative with respect to ground. It is targeted at consumer and professional DC-coupled GND-referenced audio switching applications such as computer sound cards and home theater products.

The NL3S588 may also be used in high-speed differential data routing applications. Both channels are USB 2.0-compliant.

Features

- DPDT Switch
- 3.3 V Single Supply Operation
- Available in $1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ UQFN10
- This Device is $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and RoHS Compliant

Audio Capabilities

- 2 VRMS $_{\text {Signal Switching }}$
- - 116 dB THD+N into $20 \mathrm{k} \Omega$ Load at $2 \mathrm{~V}_{\text {RMS }}$
- -112 dB THD+N into 32Ω Load at $0.707 \mathrm{~V}_{\mathrm{RMS}}$
- Signal to Noise Ratio: > 125 dBV
- $\pm 0.004 \mathrm{~dB}$ Insertion Loss at $1 \mathrm{kHz}, 20 \mathrm{k} \Omega$ Load
- $\pm 0.0008 \mathrm{~dB}$ Gain Variation 20 Hz to 20 kHz
- 112 dB Signal Muting into $20 \mathrm{k} \Omega$ Load
- 131 dB PSRR 20 Hz to 20 kHz

High-Speed Data Capabilities

- Input Signal Range: 0 V to V_{DD}
- CON: 8.9 pF (Typ)
- Data Rate: USB 2.0-Compliant - up to 480 Mbps
- Bandwidth: 580 MHz

Applications

- Hi-Fi Audio Switching
- USB 2.0 High-Speed Data Switching
- USB 3.x Type C Switching

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

AX = Device Code
$\mathrm{M}=$ Date Code

- = Pb-Free Device
(Note: Microdot may be in either location)

PIN ASSIGNMENT

(Top View)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NL3S588MUTBG	UQFN10 (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NL3S588

Figure 1. Block Diagram
FUNCTION TABLE

INPUTS		Operating Mode
EN	SEL	
0	0	Dp1 connected to D+ / Dn1 connected to D-
0	1	Shutdown (I/Os Disconnected)
1	X	

NOTE: EN Logic " 0 " $\leq 0.5 \mathrm{~V}$, Logic " 1 " $\geq 1.4 \mathrm{~V}$ or float.
SEL Logic " 0 " $\leq 0.5 \mathrm{~V}$, Logic " 1 " $\geq 1.4 \mathrm{~V}$.
X = Don't Care
PIN DESCRIPTIONS

PIN NAME	PIN	
SEL	1	DESCRIPTION
GND	2	Channel Select
Dn1	3	Ground
Dp1	5	
Dn0	4	Normally-Closed I/O
Dp0	6	
VDD	7	System power supply pin (+3 V to +3.6 V)
EN	8	Signal mute control pin
D+	9	Common I/O
D-	10	

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
$V_{\text {DD }}$	Positive 3 V DC Supply Voltage	-0.5 to +4.1	V
$\mathrm{V}_{\text {IS }}$	Analog Input/Output Voltage (D+, D-, Dpx, Dnx)	-3.1 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage (EN, SEL)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
1 IO	Switch Continuous Current (D+, D-, Dpx, Dnx)	± 300	mA
IIO_PK	Switch Peak Current (D+, D-, Dpx, Dnx) (Pulsed $1 \mathrm{~ms}, 10 \%$ Duty Cycle, Max).	± 500	mA
P_{D}	Power Dissipation in Still Air	800	mW
$\mathrm{T}_{\text {s }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Bias Under Bias	150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {s }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL94-V0 (0.125 in)	${ }^{\circ} \mathrm{C}$
ESD	ESD ProtectionHuman Body Model Machine Model	$\begin{gathered} 3000 \\ 200 \end{gathered}$	V
IL	Latch-up Current, Above V_{CC} and below GND at $125^{\circ} \mathrm{C}$ (Note 1)	± 300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{DD}	Positive DC Supply Voltage	3.0	3.6	V
$\mathrm{~V}_{\mathrm{S}}$	Switch Input / Output Voltage (D+, D-, Dpx, Dnx)	-2.9	$\mathrm{~V}_{\mathrm{DD}}$	V
V_{IN}	Digital Select Input Voltage (EN, SEL)	GND	V_{DD}	V
T_{A}	Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Voltages referenced to GND): $\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{LOAD}}=$ $20 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{SELH}}=\mathrm{V}_{\mathrm{ENH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\text {SELL }}=\mathrm{V}_{\mathrm{ENL}}=0.5 \mathrm{~V}$, (Note 2), Unless otherwise specified.

Parameter	Test Conditions	Supply (V)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Min $($ Notes 3, 4)	Myp	Max $($ Notes 3, 4)	Units

ANALOG SWITCH CHARACTERISTICS

Analog Signal Range, $V_{\text {ANALOG }}$		3.3	Full	-	2	-	$\mathrm{V}_{\text {RMS }}$
ON-Resistance, ron	$\mathrm{I}_{\mathrm{D}_{+} \text {or } \mathrm{I}_{-}=80 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Dpx}} \text { or } \mathrm{V}_{\mathrm{Dnx}}=}$$-2.828 \mathrm{~V} \text { to }+2.828 \mathrm{~V} \text { (See Figure 5) }$	3.3	25	-	2.1	-	Ω
			Full	-	2.5	-	
ron Matching Between Channels, Δ ron	$\mathrm{I}_{\mathrm{D}+}$ or $\mathrm{I}_{\mathrm{D}-}=80 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Dpx}}$ or $\mathrm{V}_{\mathrm{Dnx}}=$ Voltage at max ron over -2.828 V to +2.828 V (Note 7)	3.3	25	-	0.046	-	Ω
			Full	-	0.23	-	
$\mathrm{r}_{\text {ON }}$ Flatness, $\mathrm{r}_{\text {FLAT(ON }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{D}_{+}} \text {or } \mathrm{I}_{\mathrm{D}-}=80 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Dpx}} \text { or } \mathrm{V}_{\mathrm{Dnx}}= \\ & -2.828 \mathrm{~V}, 0 \mathrm{~V},+2.828 \mathrm{~V}(\text { Note } 5) \end{aligned}$	3.3	25	-	0.047	0.05	Ω
			Full	-	0.092	-	

2. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
3. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
4. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.
5. Flatness is defined as the difference between maximum and minimum value of ON-resistance at the specified analog signal voltage points.
6. Limits established by characterization and are not production tested.
7. ron matching between channels is calculated by subtracting the channel with the highest max ron value from the channel with lowest max ron value.
8. Crosstalk is inversely proportional to source impedance.

DC ELECTRICAL CHARACTERISTICS (Voltages referenced to GND): $\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{R}_{\text {LOAD }}=$ $20 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{SELH}}=\mathrm{V}_{\mathrm{ENH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\text {SELL }}=\mathrm{V}_{\mathrm{ENL}}=0.5 \mathrm{~V}$, (Note 2), Unless otherwise specified.

Parameter	Test Conditions	Supply (V)	Temp (${ }^{\circ} \mathrm{C}$)	Min (Notes 3, 4)	Typ	Max (Notes 3, 4)	Units
ANALOG SWITCH CHARACTERISTICS							
D+, D-, Dpx, Dnx Pull- down Resistance	$\mathrm{V}_{\mathrm{Dpx}}$ or $\mathrm{V}_{\mathrm{Dnx}}=-2.83 \mathrm{~V}, 2.83 \mathrm{~V}$, $\mathrm{V}_{\mathrm{D}+}$ or $\mathrm{V}_{\mathrm{D}-}=-2.83 \mathrm{~V}, 2.83 \mathrm{~V}$, $\mathrm{V}_{\mathrm{EN}}=3.6 \mathrm{~V}$, measure current, calculate resistance.	3.6	25	225	300	375	k Ω
			Full	-	345	-	

DYNAMIC CHARACTERISTICS

THD+N	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=1 \mathrm{kHz}$, A-weighted filter, $\mathrm{R}_{\mathrm{LOAD}}=20 \mathrm{k} \Omega$	3.3	25	-	<-116	-	dB
	$\mathrm{V}_{\mathrm{S}}=1.9 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=1 \mathrm{kHz}$, A-weighted filter, $\mathrm{R}_{\text {LOAD }}=20 \mathrm{k} \Omega$		25	-	<-116	-	
	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}_{\mathrm{RMS},} \mathrm{f}=1 \mathrm{kHz}, \text { A-weight- } \\ & \text { ed filter, } \mathrm{R}_{\text {LOAD }}=20 \mathrm{k} \Omega \end{aligned}$		25	-	<-116	-	
	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{S}}=0.707 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=1 \mathrm{kHz}, \\ & \text { A-weighted filter, } \mathrm{R}_{\mathrm{LOAD}}=32 \Omega \end{aligned}$		25	-	<-112	-	
SNR	$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz , A-weighted filter, inputs grounded, $R_{\text {LOAD }}=20 \mathrm{k} \Omega$ or 32Ω	3.3	25	-	> 125	-	dBV
Insertion Loss, Gon	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\text {LOAD }}=20 \mathrm{k} \Omega$	3.3	25	-	± 0.004	-	dB
Gain vs Frequency, G_{f}	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{R}_{\text {LOAD }}= \\ & 20 \mathrm{k} \Omega \text {, reference to } \mathrm{G}_{\text {ON }} \text { at } 1 \mathrm{kHz} \end{aligned}$	3.3	25	-	± 0.0008	-	dB
Stereo Channel Imbalance Dp0 and Dn0, Dp1 and Dn1	$\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{R}_{\text {LOAD }}=20 \mathrm{k} \Omega$	3.3	25	-	± 0.0001	-	dB
OFF-Isolation (Disabling)	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 22 \mathrm{kHz}, \mathrm{D}+=\mathrm{D}-= \\ & 2 \mathrm{~V}_{\text {RMS }}, \mathrm{R} \mathrm{LOAD}=20 \mathrm{k} \Omega,=3.3 \mathrm{~V}, \\ & \mathrm{SEL}=" \mathrm{X} \text {, } \end{aligned}$	3.3	25	-	112	-	dB
	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 22 \mathrm{kHz}, \mathrm{~V}_{\mathrm{D}+} \text { or } \mathrm{V}_{\mathrm{D}-}= \\ & 0.7 \mathrm{~V}_{\text {RMS }}, \mathrm{R}_{\text {LOAD }}=32 \Omega \end{aligned}$		25	-	129	-	
Crosstalk(Channel-to- Channel)	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz , $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}_{\mathrm{RMS}}$, signal source impedance $=20 \Omega$, (Note 8)	3.3	25	-	102	-	dB
	$R_{L}=32 \Omega, f=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}$ $=0.7 \mathrm{~V}_{\mathrm{RMS}}$, signal source impedance $=20 \Omega$, (Note 8)		25	-	129	-	
PSRR	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=100 \mathrm{mV}_{\mathrm{RMS}}$, inputs grounded	3.3	25	-	131	-	dB
	$\mathrm{f}=20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{S}}=100 \mathrm{mV} \mathrm{~V}_{\text {RMS }} \text {, in- }$ puts grounded		25	-	133	-	
Bandwidth, -3 dB	$\mathrm{R}_{\text {LOAD }}=50 \Omega$	3.3	25	-	580	-	MHz
ON to Disable Time, TtRANS-OM		3.3	25	-	250	-	ns
Disable to ON Time, TTRANS-MO	$\mathrm{V}_{\text {IS }}=1.5 \mathrm{~V}$	3.3	25	-	1680	-	$\mu \mathrm{S}$
Turn-ON Time, ton	$\begin{aligned} & V_{D p x} \text { or } V_{D n x}=1.5 \mathrm{~V}, V_{E N}=0 \mathrm{~V}, \\ & R_{L}=32 \Omega \text { (See Figure 2) } \end{aligned}$	3.3	25	-	14	-	$\mu \mathrm{S}$
Turn-OFF Time, toff	$\begin{aligned} & \mathrm{V}_{\mathrm{Dpx}} \text { or } \mathrm{V}_{\mathrm{Dnx}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \text { (See Figure 2) } \end{aligned}$	3.3	25	-	95	-	ns

2. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
3. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
4. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.
5. Flatness is defined as the difference between maximum and minimum value of ON -resistance at the specified analog signal voltage points.
6. Limits established by characterization and are not production tested.
7. ron matching between channels is calculated by subtracting the channel with the highest max ron value from the channel with lowest max ron value.
8. Crosstalk is inversely proportional to source impedance.

DC ELECTRICAL CHARACTERISTICS (Voltages referenced to GND): $\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$ to +3.6 V , $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{R}_{\text {LOAD }}=$ $20 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{SELH}}=\mathrm{V}_{\mathrm{ENH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\text {SELL }}=\mathrm{V}_{\mathrm{ENL}}=0.5 \mathrm{~V}$, (Note 2), Unless otherwise specified.

Parameter	Test Conditions	Supply (V)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Min $($ Notes 3, 4)	Typ	Max (Notes 3, 4)	Units

DYNAMIC CHARACTERISTICS

Break-Before-Make Time Delay, t_{D}	$\begin{aligned} & V_{\mathrm{Dpx}} \text { or } \mathrm{V}_{\mathrm{Dnx}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \text { (See Figure 3) } \end{aligned}$	3.6	25	-	10	-	$\mu \mathrm{s}$
OFF-Isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{D}+}$ or $\mathrm{V}_{\mathrm{D}-}=1 \mathrm{~V}_{\mathrm{RMS}}$ (See Figure 4)	3.3	25	-	70	-	dB
Crosstalk (Channel-to-Channel)	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{D}_{+}} \text {or } \\ & \mathrm{V}_{\mathrm{D}_{-}}=1 \mathrm{~V}_{\mathrm{RMS}}(\text { See Figure 4) } \end{aligned}$	3.3	25	-	89	-	dB
Dpx, Dnx OFF Capacitance, Coff	$f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{Dpx}} \text { or } V_{D n x}=V_{D+}$ or $\mathrm{V}_{\mathrm{D}-}=0 \mathrm{~V}$ (See Figure 7)	3.3	25	-	2.7	-	pF
D+, D- ON Capacitance, $\mathrm{C}_{\mathrm{COM}(\mathrm{ON})}$	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{Dpx}} \text { or } \mathrm{V}_{\mathrm{Dnx}}= \\ & \mathrm{V}_{\text {COM }}=0 \mathrm{~V} \text { (See Figure } 7 \text {) } \end{aligned}$	3.3	25	-	8.9	-	pF
Differential Insertion	$\mathrm{f}=10 \mathrm{MHz}$	3.3	25	-	-0.22	-	dB
Loss, D_{IL}	$\mathrm{f}=800 \mathrm{MHz}$	3.3	25	-	-3.3	-	
Differential OFF-	$\mathrm{f}=10 \mathrm{MHz}$	3.3	25	-	-44	-	dB
Isolation, $\mathrm{D}_{\text {ISO }}$	$\mathrm{f}=800 \mathrm{MHz}$	3.3	25	-	-16	-	
Differential Crosstalk, $\mathrm{D}_{\text {CTK }}$	$\mathrm{f}=10 \mathrm{MHz}$	3.3	25	-	-44	-	dB
	$\mathrm{f}=800 \mathrm{MHz}$	3.3	25	-	-16	-	

POWER SUPPLY CHARACTERISTICS

Power Supply Range, V_{DD}		3.3	Full	3	-	3.6	V
Positive Supply Current, I+	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {SEL }}=0 \mathrm{~V}$ or V_{DD}	3.6	25	-	54	65	$\mu \mathrm{A}$
			Full	-	59	-	
	$\mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SEL}}=0 \mathrm{~V}$ or V_{DD}	3.6	25	-	14	40	$\mu \mathrm{A}$
			Full	-	15	-	
	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {SEL }}=1.8 \mathrm{~V}$	3.6	25	-	55	65	$\mu \mathrm{A}$
			Full	-	58	-	

2. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
3. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
4. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.
5. Flatness is defined as the difference between maximum and minimum value of ON -resistance at the specified analog signal voltage points.
6. Limits established by characterization and are not production tested.
7. $r_{O N}$ matching between channels is calculated by subtracting the channel with the highest max ron value from the channel with lowest max ron value.
8. Crosstalk is inversely proportional to source impedance.

DC ELECTRICAL CHARACTERISTICS - Digital Section (Voltages referenced to GND): $\mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}$ $=2 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{LOAD}}=20 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\text {SELH }}=\mathrm{V}_{\mathrm{ENH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\text {SELL }}=\mathrm{V}_{\text {ENL }}=0.5 \mathrm{~V}$, (Note 9), Unless otherwise specified.

Parameter	Test Conditions	Supply (V)	Temp $\left({ }^{\circ} \mathbf{C}\right)$	Min (Notes 10, 11)	Max Typ	Motes 10, 11)	Units

DIGITAL INPUT CHARACTERISTICS

Input Voltage Low, $\mathrm{V}_{\text {SELL }}, \mathrm{V}_{\mathrm{ENL}}$		3.3	Full	-	-	0.5	V
Input Voltage High, $\mathrm{V}_{\mathrm{SELH}}, \mathrm{V}_{\mathrm{ENH}}$		3.3	Full	1.4	-	-	V
Input Current, $\mathrm{I}_{\text {SELH }}, \mathrm{I}_{\mathrm{SELL}}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SEL}}=0 \mathrm{~V}$ or V_{DD}	3.6	Full	-0.5	0.01	0.5	$\mu \mathrm{~A}$
Input Current, $\mathrm{I}_{\mathrm{ENL}}$	$\mathrm{V}_{\mathrm{SEL}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	3.6	Full	-1.3	-0.7	0.3	$\mu \mathrm{~A}$
Input Current, $\mathrm{I}_{\mathrm{ENH}}$	$\mathrm{V}_{\mathrm{SEL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{DD}}$	3.6	Full	-0.5	0.01	0.5	$\mu \mathrm{~A}$

9. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
10. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
11. Parameters with MIN and/or MAX limits are 100% tested at $+25 \mathrm{C} C$, unless otherwise specified. Temperature limits established by characterization and are not production tested.

Logic input waveform is inverted for switches that have the opposite logic sense.

Measurement Points

Repeat test for all switches. C_{L} includes fixture and stray capacitance.

$$
V_{\text {OUT }}=V_{\text {(Dpx or Dnx) }} \frac{R_{\mathrm{L}}}{R_{\mathrm{L}}+\mathrm{rON}}
$$

Test Circuit

Figure 2. Switching Times

Figure 3. Break-Before-Make Time

Signal direction through switch is reversed, worst case values are recorded. Repeat test for all switches.

Repeat test for all switches.

Figure 4. Off-Isolation Test Circuit
Figure 5. ron Test Circuit

NL3S588

TEST CIRCUITS AND WAVEFORMS

Signal direction through switch is reversed, worst case values are recorded. Repeat test for all switches.

Figure 6. Crosstalk Test Circuit

Repeat test for all switches.
Figure 7. Capacitance Test Circuit

TYPICAL PERFORMANCE CURVES:
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

Figure 8. On-Resistance vs. Switch Voltage

Figure 10. Off-Isolation, 0.707 VRMS Signal, 32 k Ω Load

Figure 9. Off-Isolation, 2 VRMS Signal, 20 k Ω Load

Figure 11. Channel-to-Channel Crosstalk

NL3S588

TYPICAL PERFORMANCE CURVES:
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

Figure 12. Channel-to-Channel Crosstalk

Figure 14. Gain vs. Frequency

Figure 16. THD+N vs. Signal Levels vs. Frequency

Figure 13. Insertion Loss vs. Frequency

Figure 15. Stereo Imbalance vs. Frequency

Figure 17. THD+N vs. Signal Levels vs. Frequency

NL3S588

TYPICAL PERFORMANCE CURVES:
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

Figure 18. THD+N vs. Signal Levels vs. Frequency

Figure 20. PSRR vs. Frequency

Figure 22. Crosstalk and Off-Isolation

Figure 19. THD+N vs. Signal Levels vs. Frequency

Figure 21. Frequency Response

Figure 23. Differential Crosstalk

NL3S588

TYPICAL PERFORMANCE CURVES:
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

Figure 24. Differential Off-Isolation

Figure 25. Differential Crosstalk

Figure 26. USB 2.0 High-Speed Eye Diagram

UQFN10 1.4x1.8, 0.4P
CASE 488AT-01
ISSUE A
DATE 01 AUG 2007
SCALE 5:1

BOTTOM VIEW

MOUNTING FOOTPRINT

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED TERMINAL AIMENSION b APPLIES TO PLATED TERMINAL
ANEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.45	0.60
A1	0.00	0.05
A3	0.127 REF	
b	0.15	
D	1.40 .25	
E	1.80 BSC	
e	$0.40 ~ B S C ~$	
L	0.30	0.50
L1	0.00	0.15
L3	0.40	0.60

GENERIC MARKING DIAGRAM*

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " P ", may or may not be present.

| DOCUMENT NUMBER: | 98AON22493D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 10 PIN UQFN, 1.4 X 1.8, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

