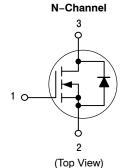
MOSFET – Single, N-Channel, Small Signal, SOT-23 60 V, 310 mA



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
60 V	3.0 Ω @ 4.5 V	310 mA
	2.5 Ω @ 10 V	

Simplified Schematic

MARKING DIAGRAM & PIN ASSIGNMENT Drain З TJ4 M∎ SOT-23 1 2 **CASE 318** STYLE 21 Gate Source TJ4 = Device Code = Date Code Μ = Pb-Free Package (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTR5103NT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Features

- Low R_{DS(on)}
- Small Footprint Surface Mount Package
- Trench Technology
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Low Side Load Switch
- Level Shift Circuits
- DC–DC Converter
- Portable Applications i.e. DSC, PDA, Cell Phone, etc.

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Rating		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	60	V
Gate-to-Source Voltage		V _{GS}	±30	V
Drain Current (Note 1) Steady State t < 5 s	$T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$ $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	ID	260 190 310 220	mA
Power Dissipation (Note 1) Steady State t < 5 s		P _D	300 420	mW
Pulsed Drain Current ($t_p = 10 \ \mu$	s)	I _{DM}	1.2	А
Operating Junction and Storage Temperature Range	9	T _J , T _{STG}	–55 to +150	°C
Source Current (Body Diode)		۱ _S	300	mA
Lead Temperature for Soldering (1/8" from case for 10 s)	g Purposes	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

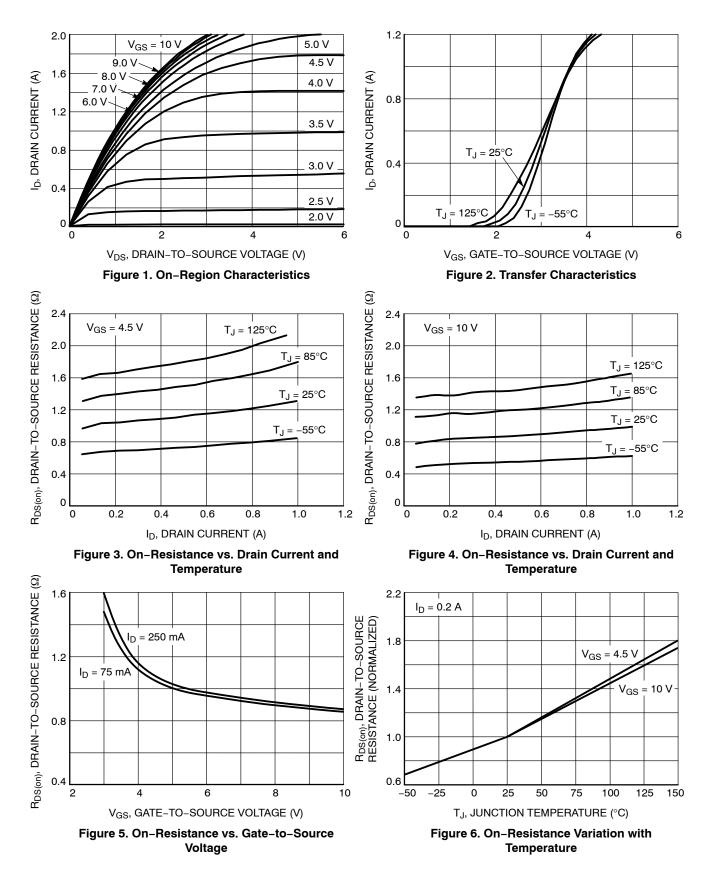
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	417	°C/W
Junction–to–Ambient – t \leq 5 s (Note 1)	$R_{\theta JA}$	300	

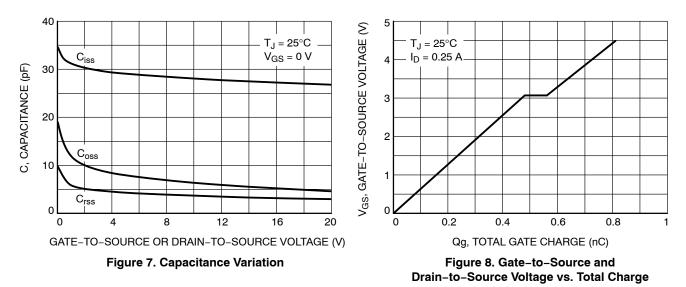
1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
OFF CHARACTERISTICS		•					
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				75		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 60 V	T _J = 25°C T _J = 125°C			1 500	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 30 V$				200	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS},$	I _D = 250 μA	1.9		2.6	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 240 mA			1.0	2.5	Ω
		V_{GS} = 4.5 V, I _D = 50 mA			1.4	3.0	
Forward Transconductance	9 FS	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 200 \text{ mA}$			530		mS
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			26.7	40	pF
Output Capacitance	C _{OSS}				4.6		
Reverse Transfer Capacitance	C _{RSS}				2.9		
Total Gate Charge	Q _{G(TOT)}				0.81		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 5 V,	V _{DS} = 10 V;		0.31]
Gate-to-Source Charge	Q _{GS}	I _D = 240 mA			0.48		
Gate-to-Drain Charge	Q _{GD}				0.08		
SWITCHING CHARACTERISTICS, V_{GS}	= V (Note 3)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DD} = 30 V, I _D = 200 mA, R _G = 10 Ω			1.7		ns
Rise Time	t _r				1.2		-
Turn-Off Delay Time	t _{d(OFF)}				4.8		
Fall Time	t _f				3.6		
DRAIN-SOURCE DIODE CHARACTER	ISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.79	1.2	V
	1						1


 $I_{\rm S} = 200 \text{ mA}$ Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

T_J = 85°C


0.7

2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% 3. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

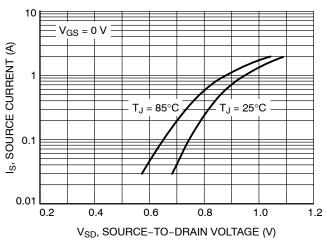
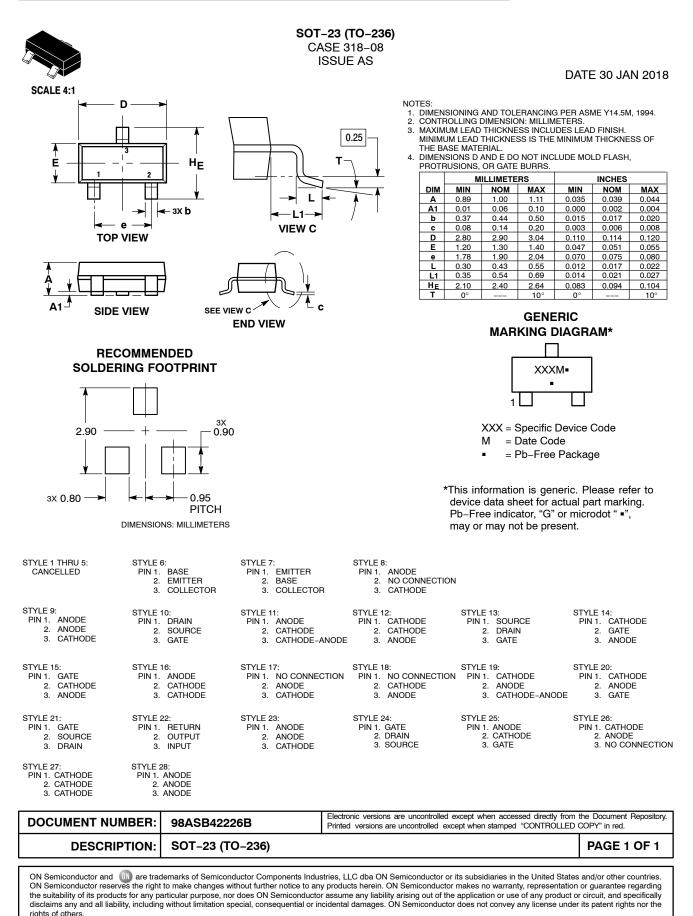



Figure 9. Diode Forward Voltage vs. Current

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative