MOSFET – Single P-Channel, Small Signal, SOT-1123, 1.0 x 0.6 mm

-20 V, -200 mA

Features

- Single P-Channel MOSFET
- $\bullet \;\; Offers \; a \; Low \; R_{DS(on)} \; Solution \; in the \; Ultra \; Small \; 1.0 \; x \; 0.6 \; mm \; Package$
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics.
- This is a Pb-Free Device

Applications

- High Side Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Equipment

MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter			Symbol	Value	Unit	
Drain-to-Source Voltage			V _{DSS}	-20	V	
Gate-to-Source Voltag	е		V _{GS}	±8	V	
Continuous Drain	Steady	$T_A = 25^{\circ}C$		-150		
Current (Note 1)	State	$T_A = 85^{\circ}C$	I_{D}	-110	mA	
	t ≤ 5 s	$T_A = 25^{\circ}C$		-200		
Power Dissipation	Steady			-125		
(Note 1)	State	$T_A = 25^{\circ}C$	P_{D}		mW	
	t ≤ 5 s			-200		
Pulsed Drain Current $t_p = 10 \mu s$			I _{DM}	-600	mA	
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C	
On the Original (Bart Binds) (Nata 6)				000		
Source Current (Body Diode) (Note 2)			IS	-200	mA	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T_L	260	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface–mounted on FR4 board using the minimum recommended pad size, or 2 $\mbox{mm}^2,$ 1 oz Cu.

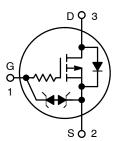
1

2. Pulse Test: pulse width $\leq\!300~\mu\text{s},$ duty cycle $\leq\!2\%$

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS} R _{DS(ON)} MAX		I _D Max
-20 V	3.5 Ω @ -4.5 V	
	4.0 Ω @ -2.5 V	0.004
	5.5 Ω @ -1.8 V	–0.20 A
	7.0 Ω @ -1.5 V	



MARKING DIAGRAM

- = Specific Device Code
 (Rotated 90° Clockwise)
- M = Date Code

P-Channel MOSFET

ORDERING INFORMATION

Device	Package	Shipping [†]
NTNUS3171PZT5G	SOT-1123 (Pb-Free)	8000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	1000	°C/W
Junction-to-Ambient - t = 5 s (Note 3)	$R_{ hetaJA}$	600	

^{3.} Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-20			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = -5.0 \text{ V}$	T _J = 25°C			-50	
		$V_{GS} = 0 \text{ V}, V_{DS} = -5.0 \text{ V}$	T _J = 85°C			-100	nA
		$V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$	T _J = 25°C			-200	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = 0$	±5.0 V			±100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -2$	250 μA	-0.4	-0.7	-1.0	V
Drain-to-Source On Resistance	R _{DS(ON)}	$V_{GS} = -4.5 \text{ V}, I_D = -100 \text{ mA}$			2.0	3.5	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -50 \text{ mA}$			2.6	4.0	
		$V_{GS} = -1.8 \text{ V}, I_D = -20 \text{ mA}$			3.4	5.5	
		$V_{GS} = -1.5 \text{ V}, I_D = -10 \text{ mA}$			4.0	7.0	
		V _{GS} = -1.2 V, I _D = -	1.0 mA		6.0		
Forward Transconductance	9FS	$V_{DS} = -5.0 \text{ V}, I_D = -125 \text{ mA}$			0.26		S
Source-Drain Diode Voltage	V _{SD}	$V_{GS} = 0 \text{ V, } I_{S} = -200 \text{ mA}$		-0.5		-1.4	V
CHARGES, CAPACITANCES AND GATE	RESISTANCE						
Input Capacitance	C _{ISS}	f = 1 MHz, V _{GS} = 0 V V _{DS} = -15 V			13		
Output Capacitance	C _{OSS}				3.4		pF
Reverse Transfer Capacitance	C _{RSS}				1.6		
SWITCHING CHARACTERISTICS, V_{GS} =	4.5 V (Note 4)						
Turn-On Delay Time	t _{d(ON)}				30		
Rise Time	t _r	V_{GS} = -4.5 V, V_{DD} = -15 V, I_{D} = -200 mA, R_{G} = 2.0 Ω			56		ns
Turn-Off Delay Time	t _{d(OFF)}				196		
Fall Time	t _f				145		

^{4.} Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

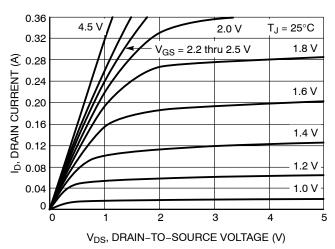
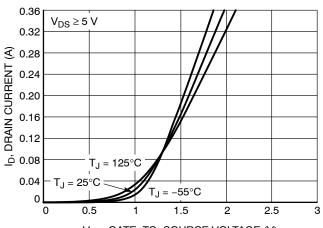



Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Gate Voltage

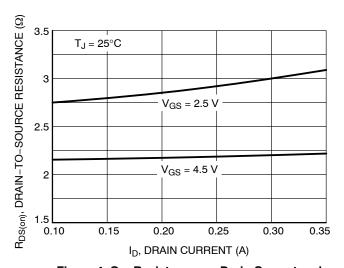


Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

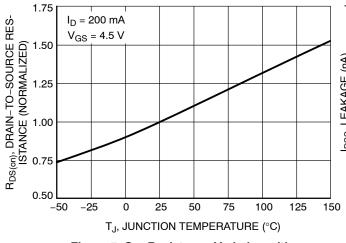


Figure 5. On-Resistance Variation with **Temperature**

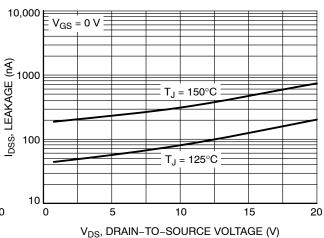


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

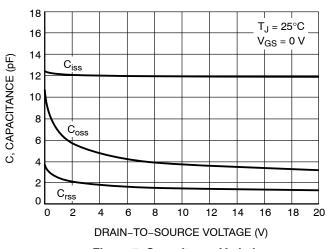
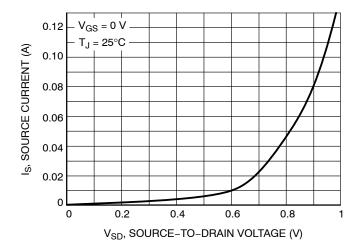
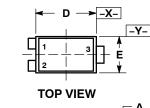
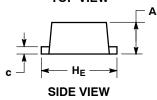


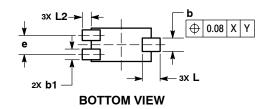
Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

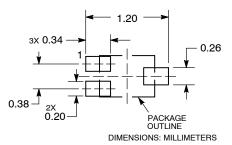



Figure 9. Diode Forward Voltage vs. Current




SOT-1123 CASE 524AA ISSUE C

DATE 29 NOV 2011


SCALE 8:1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE
- MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD
 FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.34	0.40		
b	0.15	0.28		
b1	0.10	0.20		
c	0.07	0.17		
D	0.75	0.85		
Е	0.55	0.65		
Φ	0.35	0.40		
HE	0.95	1.05		
L	0.185 REF			
L2	0.05 0.15			

GENERIC MARKING DIAGRAM*

= Specific Device Code Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	2. CATHODE	SOURCE
COLLECTOR	CATHODE	CATHODE	ANODE	3. DRAIN

DOCUMENT NUMBER:	98AON23134D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-1123, 3-LEAD, 1.0X0.6X0.37, 0.35P		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative