NTGS3441P

Power MOSFET

-20 V, -3.16 A, Single P-Channel TSOP-6

Features

- Ultra Low R_{DS(on)} to Improve Conduction Loss
- Low Gate Charge to Improve Switching Losses
- TSOP-6 Surface Mount Package
- This is a Pb-Free Device

Applications

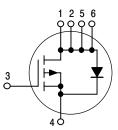
- High Side Switch in DC–DC Converters
- Battery Management

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	-20	V
Gate-to-Source Voltage	е		V_{GS}	±12	V
Continuous Drain	Steady T _A = 25°C		I _D	-2.5	Α
Current (Note 1)	State	T _A = 85°C]	-1.8	
	t = 10 s	T _A = 25°C]	-3.16	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	0.98	W
	t = 10 s			1.60	
Continuous Drain	Steady State	T _A = 25°C	I _D	-1.8	Α
Current (Note 2)	State	T _A = 85°C		-1.3	
Power Dissipation (Note 2)		T _A = 25°C	P _D	0.51	W
Pulsed Drain Current	t _p = 10 μ	s	I _{DM}	-13	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)			I _S	-1.5	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = 0.0751 in sq)



ON Semiconductor®

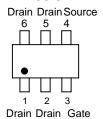
http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX
-20 V	91 mΩ @ 4.5 V	
	144 mΩ @ 2.7 V	–3.16 A
	188 mΩ @ 2.5 V	

P-Channel

MARKING DIAGRAM

TSOP-6 CASE 318G STYLE 1



PT = Device Code

M = Date Code= Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS3441PT1G	TSOP-6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTGS3441P

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	128	°C/W
Junction-to-Ambient - t = 10 s (Note 3)	$R_{ heta JA}$	78	
Junction-to-Ambient - Steady State (Note 4)	$R_{ hetaJA}$	244	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
 Surface-mounted on FR4 board using the minimum recommended pad size (Cu area = TBD in sq)

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

	1				r	1	1
Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_{D} = -250 \mu\text{A}$		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				16		mV/ °C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = -20 \text{ V}$	T _J = 125°C			-10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	s = ±12 V			±100	nA
ON CHARACTERISTICS (Note 5)					-		•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= –250 μA	0.6		1.6	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.2		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D$	= -3.0 A		91	110	mΩ
		V _{GS} = 2.7 V, I _D	= -1.5 A		144	165	
		$V_{GS} = 2.5 \text{ V}, I_{D}$	= -1.5 A		188		
Forward Transconductance	9 _{FS}	$V_{DS} = -15 \text{ V}, I_{D} = -1.5 \text{ A}$			4.0		S
CHARGES, CAPACITANCES AND GATE RES	ISTANCE	•					
Input Capacitance	C _{ISS}				345		pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, } V_{DS} = -15 \text{ V}$			150		1
Reverse Transfer Capacitance	C _{RSS}				40		1
Total Gate Charge	Q _{G(TOT)}				3.25	6.0	nC
Threshold Gate Charge	Q _{G(TH)}	·	0.1/.1 2.0.4		0.3		1
Gate-to-Source Charge	Q_{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = -10 \text{ V}; I_D = -3.0 \text{ A}$			0.6		1
Gate-to-Drain Charge	Q_{GD}				1.4		1
SWITCHING CHARACTERISTICS (Note 6)							-
Turn-On Delay Time	t _{d(ON)}				7.0	12	ns
Rise Time	T _r	$V_{GS} = 4.5 \text{ V}, V_{DI}$	_D = -10 V,		14	25	1
Turn-Off Delay Time	t _{d(OFF)}	$I_D = -1.5 \text{ A}, R_G$	$_{\rm S}$ = 4.7 Ω		13	25	1
Fall Time	T _f	1			4.0	8.0	1
DRAIN-SOURCE DIODE CHARACTERISTICS	3						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 V$	T _J = 25°C		8.0	1.2	V
		$I_S = -3.0 \text{ A}$	T _J = 125°C		0.7		1
Reverse Recovery Time	t _{RR}	1			25		ns
Charge Time	Ta	$V_{GS} = 0 \text{ V, } d_{IS}/d_t = 0 \text{ V}$	= 100 A/μs,		10		1
Discharge Time	T _b	$I_S = -3.0 \text{ A}$			15		1
Reverse Recovery Charge	Q_{RR}				15		nC

^{5.} Switching characteristics are independent of operating junction temperatures

^{6.} Pulse Test: pulse width = 300 μ s, duty cycle = 2%

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

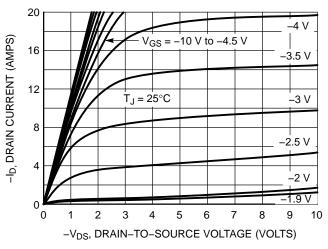


Figure 1. On-Region Characteristics

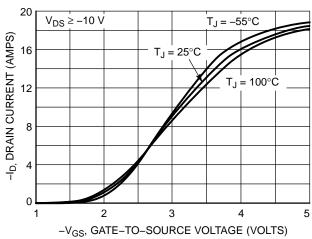


Figure 2. Transfer Characteristics

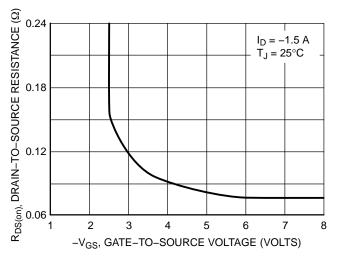


Figure 3. On-Resistance vs. Gate-to-Source Voltage

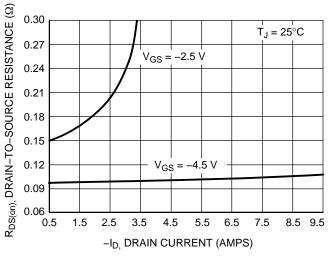


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

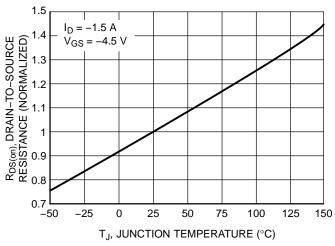


Figure 5. On–Resistance Variation with Temperature

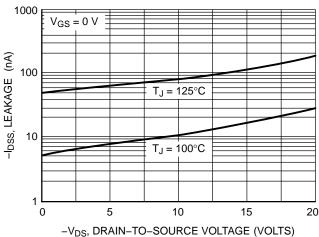


Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTGS3441P

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

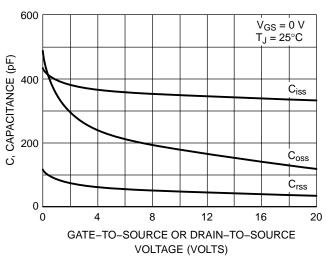


Figure 7. Capacitance Variation

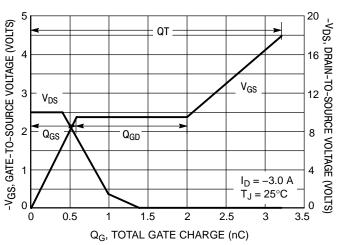


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

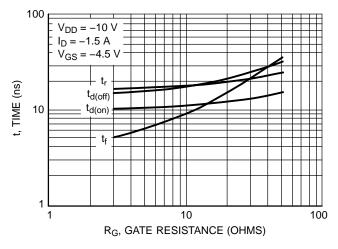


Figure 9. Gate Threshold Voltage Variation with Temperature

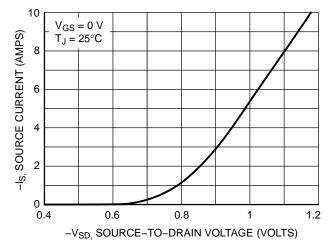


Figure 10. Diode Forward Voltage vs. Current

Δ1

STYLE 13: PIN 1. GATE 1

2. SOURCE 2

3. GATE 2

4. DRAIN 2

5. SOURCE 1

DRAIN 1

TSOP-6 CASE 318G-02 **ISSUE V**

12

C SEATING PLANE

DATE 12 JUN 2012

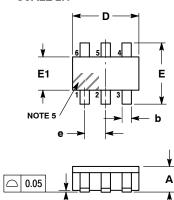
STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR

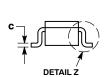
3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR

2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O

STYLE 12:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D
- AND E1 ARE DETERMINED AT DATUM H.
 PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

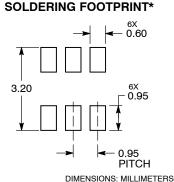

	MILLIMETERS				
DIM	MIN NOM MAX				
Α	0.90	1.00	1.10		
A1	0.01	0.06	0.10		
b	0.25	0.38	0.50		
С	0.10	0.18	0.26		
D	2.90	3.00	3.10		
E	2.50	2.75	3.00		
E1	1.30	1.50	1.70		
е	0.85	0.95	1.05		
Ĺ	0.20	0.40	0.60		
L2	0.25 BSC				
М	Uo.		100		


STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1

STYLE 11:

BASE 1 6. COLLECTOR 2

PIN 1. SOURCE 1


DETAIL Z

Н

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. VZ 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GATE	STYLE 10: PIN 1. D(OUT)+ 2. GND 3. D(OUT)- 4. D(IN)- 5. VBUS 6. D(IN)+

. D(in)	2. DRAIN	2. GND	2. DRAIN 2
. D(in)+	SOURCE	D(OUT)-	3. DRAIN 2
. D(oút)+	4. DRAIN	4. D(IN)-	4. SOURCE 2
. D(out)	5. DRAIN	5. VBUS	5. GATE 1
. GND ´	HIGH VOLTAGE G	GATE 6. D(IN)+	DRAIN 1/GATE 2
14:	STYLE 15:	STYLE 16:	STYLE 17:
. ANODE	PIN 1. ANODE	PIN 1. ANODE/CATHODE	PIN 1. EMITTER
. SOURCE	2. SOURCE	2. BASE	2. BASE
. GATE	3. GATE	EMITTER	ANODE/CATHODE
. CATHODE/DRAIN	4. DRAIN	4. COLLECTOR	4. ANODE
. CATHODE/DRAIN	5. N/C	5. ANODE	CATHODE
. CATHODE/DRAIN	CATHODE	CATHODE	COLLECTOR

GENERIC MARKING DIAGRAM*

STYLE 14: PIN 1. ANODE

5.

3 GATE

RECOMMENDED

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

XXX = Specific Device Code

Α =Assembly Location Υ = Year

W = Work Week = Pb-Free Package XXX = Specific Device Code M = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative