MJF15030 (NPN), MJF15031 (PNP)

Complementary Power Transistors
 For Isolated Package Applications

Designed for general-purpose amplifier and switching applications, where the mounting surface of the device is required to be electrically isolated from the heatsink or chassis.

Features

- Electrically Similar to the Popular MJE15030 and MJE15031
- No Isolating Washers Required, Reduced System Cost
- High Current Gain-Bandwidth Product
- UL Recognized, File \#E69369, to 3500 V RMS Isolation
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	150	Vdc
Collector-Base Voltage	V_{CB}	150	Vdc
Emitter-Base Voltage	V_{EB}	5	Vdc
RMS Isolation Voltage (Note 1) $\left(\mathrm{t}=0.3 \mathrm{sec}, \mathrm{R} . \mathrm{H} . \leq 30 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ Per Figure 11	$\mathrm{V}_{\text {ISOL }}$	4500	$\mathrm{V}_{\text {RMS }}$
Collector Current - Continuous	I_{C}	8	Adc
Collector Current - Peak	I_{CM}	16	Adc
Base Current	I_{B}	2	Adc
Total Power Dissipation (Note 2) @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 36 \\ 0.286 \end{gathered}$	$\begin{gathered} W \\ W /{ }^{\circ} \mathrm{C} \end{gathered}$
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 2.0 \\ 0.016 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case (Note 2)	$\mathrm{R}_{\theta \mathrm{JC}}$	3.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature for Soldering Purposes	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Proper strike and creepage distance must be provided.
2. Measurement made with thermocouple contacting the bottom insulated surface (in a location beneath the die), the devices mounted on a heatsink with thermal grease and a mounting torque of $\geq 6 \mathrm{in}$. lbs.
[^0]
ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

COMPLEMENTARY SILICON

 POWER TRANSISTORS 8 AMPERES 150 VOLTS, 36 WATTSCOLLECTOR 2, 4 COLLECTOR 2, 4

MJF1503x = Specific Device Code
x = 0 or 1
G $\quad=$ Pb-Free Package
A = Assembly Location
Y = Year
WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MJF15030G	TO-220 FULLPACK (Pb-Free)	50 Units/Rail
MJF15031G	TO-220 FULLPACK (Pb-Free)	50 Units/Rail

MJF15030 (NPN), MJF15031 (PNP)

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (Note 3) ($\mathrm{IC}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {CEO(sus) }}$	150	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=150 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$I_{\text {ceo }}$	-	10	$\mu \mathrm{Adc}$
Collector Cutoff Current $\left(V_{C B}=150 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\text {cbo }}$	-	10	$\mu \mathrm{Adc}$
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{BE}}=5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{l}_{\text {ebo }}$	-	10	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (Note 3)

$\begin{aligned} & \hline \text { DC Current Gain }\left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{Vdc}\right) \\ &\left(\mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{Vdc}\right) \\ &\left(\mathrm{I}_{\mathrm{C}}=3 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{Vdc}\right) \\ &\left(\mathrm{I}_{\mathrm{C}}=4 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 20 \end{aligned}$		-
		Typ		
DC Current Gain Linearity (V_{CE} from 2 V to 20 V , I_{C} from 0.1 A to 3 A) (NPN to PNP)	$\mathrm{h}_{\text {FE }}$	23		
Collector-Emitter Saturation Voltage $\left(I_{C}=1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{Adc}\right)$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	0.5	Vdc
Base-Emitter On Voltage ($\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=2 \mathrm{Vdc}$)	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	1	Vdc

DYNAMIC CHARACTERISTICS

Current Gain - Bandwidth Product (Note 4) $\left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}_{\text {test }}=10 \mathrm{MHz}\right)$	f_{T}	30	-	MHz

3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.
4. $\mathrm{f}_{\mathrm{T}}=\left|\mathrm{h}_{\mathrm{f}}\right| \bullet \mathrm{f}_{\text {test }}$.

Figure 1. Thermal Response

MJF15030 (NPN), MJF15031 (PNP)

Figure 2. Forward Bias Safe Operating Area

Figure 3. Reverse Bias Switching Safe Operating Area

Figure 5. Small-Signal Current Gain

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figures 2 and 3 is based on $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}=150^{\circ} \mathrm{C}$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ $<150^{\circ} \mathrm{C}$. $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 1. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

Figure 4. Capacitances

Figure 6. Current Gain — Bandwidth Product

MJF15030 (NPN), MJF15031 (PNP)

DC CURRENT GAIN

Figure 7a. MJF15030 NPN

Figure 7b. MJF15031 PNP
"ON" VOLTAGE

Figure 8a. MJF15030 NPN

Figure 9. Turn-On Times

Figure 8b. MJF15031 PNP

Figure 10. Turn-Off Times

MJF15030 (NPN), MJF15031 (PNP)

TEST CONDITIONS FOR ISOLATION TESTS*

FULLY ISOLATED PACKAGE

Figure 11. Mounting Position
*Measurement made between leads and heatsink with all leads shorted together.

MOUNTING INFORMATION

Figure 12. Typical Mounting Techniques*

Abstract

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to $8 \mathrm{in} \cdot \mathrm{lbs}$ is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of $20 \mathrm{in} \cdot \mathrm{lbs}$ will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to $20 \mathrm{in} \cdot \mathrm{lbs}$ without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in $\cdot \mathrm{lbs}$ of mounting torque under any mounting conditions.

**For more information about mounting power semiconductors see Application Note AN1040.

SCALE 1:1
scale 1:1

ϕ	$0.25(0.010)(\mathbb{I}$	B (M)	Y

TO-220 FULLPAK

 CASE 221D-03ISSUE K
DATE 27 FEB 2009

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	IIN	MAX
A	0.617	0.665	15.67	16.12
B	0.392	0.419	9.96	10.63
C	0.177	0.193	4.50	4.90
D	0.024	0.039	0.60	1.00
F	0.116	0.129	2.95	3.28
G	0.100 BSC	2.54 BSC		
H	0.118	0.135	3.00	3.43
J	0.018	0.025	0.45	0.63
K	0.503	0.541	12.78	13.73
L	0.048	0.058	1.23	1.47
N	0.200 BSC	5.08 BSC		
Q	0.122	0.138	3.10	3.50
R	0.099	0.117	2.51	2.96
S	0.092	0.113	2.34	2.87
U	0.239	0.271	6.06	6.88

MARKING
DIAGRAMS

| DOCUMENT NUMBER: | 98ASB42514B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-220 FULLPAK | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

