Low Power, Reduced EMI Clock Synthesizer

The NB2870A is a versatile spread spectrum frequency modulator designed specifically for a wide range of clock frequencies. The NB2870A reduces ElectroMagnetic Interference (EMI) at the clock source, allowing system wide reduction of EMI of all clock dependent signals. The NB2870A allows significant system cost savings by reducing the number of circuit board layers, ferrite beads and shielding that are traditionally required to pass EMI regulations.

The NB2870A uses the most efficient and optimized modulation profile approved by the FCC and is implemented by using a proprietary all digital method.

The NB2870A modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This results in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation'.

The NB2870A is targeted towards all portable devices with very low power requirements like MP3 players, Notebooks and digital still cameras.

Features

- Generates an EMI Optimized Clocking Signal at the Output
- Integrated Loop Filter Components
- Operates with a 3.3 V / 2.5 V Supply
- Operating Current less than 4.0 mA
- Low Power CMOS Design
- Input Frequency Range: 13 MHz to 30 MHz
- Generates a 1X Low EMI Spread Spectrum clock of the Input Frequency
- Frequency Deviation ±0.75% (TYP) @ 22 MHz
- Available in TSOP-6 Package (TSOT-23-6)
- Pb-Free Package is Available

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*

TSOP-6 (TSOT-23-6) SN SUFFIX CASE 318G

E09 = Specific Device Code

A = Assembly Location

Y = Year

W = Work Week

■ = Pb-Free Package

(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

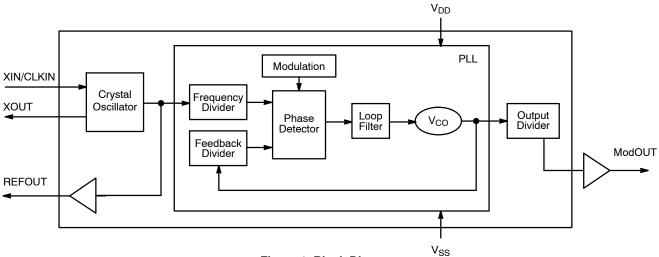


Figure 1. Block Diagram

Table 1. KEY SPECIFICATIONS

Description	Specification
Supply Voltages	V _{DD} = 3.3 V / 2.5 V
Frequency Range	13 MHz < CLKIN < 30 MHz
Cycle-to-Cycle Jitter	200 ps (maximum)
Output Duty Cycle	45/55% (worst case)
Modulation Equation	F _{IN} /640
Frequency Deviation	±0.75% (TYP) @ 22 MHz

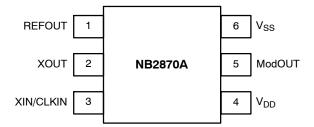


Figure 2. Pin Configuration

Table 2. PIN DESCRIPTION

Pin#	Pin Name	Туре	Description
1	REFOUT	0	Buffered output of the input frequency.
2	XOUT	0	Crystal connection. If using an external reference, this pin must be left unconnected.
3	XIN/CLKIN	I	Crystal connection or external reference frequency input. This pin has dual functions. It can be connected either to an external crystal or an external reference clock
4	V_{DD}	Р	Power supply for the entire chip.
5	ModOUT	0	Spread spectrum clock output.
6	V_{SS}	Р	Ground connection.

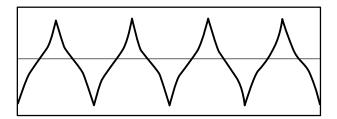


Figure 3. Modulation Profile

Table 3. MAXIMUM RATINGS

Symbol	Description	Rating	Unit
$V_{DD,}V_{IN}$	Voltage on any pin with respect to Ground	0.5 to + 7.0	V
T _{STG}	Storage Temperature	-65 to +125	°C
T _A	Operating Temperature	0 to 70	°C
T _s	Max. Soldering Temperature (10 sec)	260	°C
TJ	Junction Temperature	150	°C
T _{DV}	Static Discharge Voltage (As per MIL-STD-883, Method 3015)	2	kV

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. DC ELECTRICAL CHARACTERISTICS FOR 2.5 V SUPPLY (Test Conditions: All parameters are measured at room temperature 25°C)

Symbol	Description	Min	Тур	Max	Unit
V _{IL}	Input LOW Voltage	GND - 0.3		0.8	V
V _{IH}	Input HIGH Voltage	2.0		V _{DD} + 0.3	V
I _{IL}	Input LOW Current			-35	μΑ
I _{IH}	Input HIGH Current			35	μΑ
I _{XOL}	XOUT Output LOW Current (@ 0.5 V, V _{DD} = 2.5 V)		3.0		mA
I _{XOH}	XOUT Output HIGH Current (@ 1.8 V, V _{DD} = 2.5 V)		3.0		mA
V _{OL}	Output LOW Voltage (V _{DD} = 2.5 V, I _{OL} = 8.0 mA)			0.6	V
V _{OH}	Output HIGH Voltage (V _{DD} = 2.5 V, I _{OH} = 8.0 mA)	1.8			V
I _{DD}	Static Supply Current (Note 1)		1.0		mA
I _{CC}	Dynamic Supply Current (2.5 V, 22 MHz, and No Load)		3.0		mA
V_{DD}	Operating Voltage	2.375	2.5	2.625	V
t _{ON}	Powerup Time (first locked cycle after powerup) (Note 2)			5.0	mS
Z _{OUT}	Clock Output Impedance		50		Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. XIN/CLKIN pin is pulled low.
- 2. V_{DD} and XIN/CLKIN input are stable.

Table 5. AC ELECTRICAL CHARACTERISTICS FOR 2.5 V SUPPLY

Symbol	Description	Min	Тур	Max	Unit
CLKIN	Input Frequency	13		30	MHz
ModOUT	Output Frequency	13		30	MHz
f _d	Frequency Deviation Input Frequency = 13 MHz Input Frequency = 30 MHz			±1.20 ±0.47	%
t _{LH} (Note 3)	Output Rise Time (measured at 0.7 V to 1.7 V)	0.7	1.4	1.6	ns
t _{HL} (Note 3)	Output Fall Time (measured at 1.7 V to 0.7 V)	0.4	0.8	1.0	ns
t _{JC}	Jitter (Cycle-to-Cycle)			200	ps
t _D	Output Duty Cycle	45	50	55	%

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. t_{LH} and t_{HL} are measured at capacitive load of 15 pF.

Table 6. DC ELECTRICAL CHARACTERISTICS FOR 3.3 V SUPPLY (Test Conditions: All parameters are measured at room temperature 25°C)

Symbol	Description	Min	Тур	Max	Unit
V _{IL}	Input LOW Voltage	GND - 0.3		0.8	V
V _{IH}	Input HIGH Voltage	2.0		V _{DD} + 0.3	V
I _{IL}	Input LOW Current			-35	μΑ
I _{IH}	Input HIGH Current			35	μΑ
I _{XOL}	XOUT Output LOW Current (@ 0.4 V, V _{DD} = 3.3 V)		3		mA
I _{XOH}	XOUT Output HIGH Current (@ 2.5 V, V _{DD} = 3.3 V)		3		mA
V _{OL}	Output LOW Voltage (V _{DD} = 3.3 V, I _{OL} = 8.0 mA)			0.4	V
V _{OH}	Output HIGH Voltage (V _{DD} = 3.3 V, I _{OH} = 8.0 mA)	2.5			V
I _{DD}	Static Supply Current (Note 4)		1.2		mA
I _{CC}	Dynamic Supply Current (3.3 V, 22 MHz, and No Load)		4.0		mA
V_{DD}	Operating Voltage	2.7	3.3	3.6	V
t _{ON}	Powerup Time (first locked cycle after powerup) (Note 5)			5.0	mS
Z _{OUT}	Clock Output Impedance		45		Ω

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 4. XIN/CLKIN pin is pulled low.
- 5. V_{DD} and XIN/CLKIN input are stable.

Table 7. AC ELECTRICAL CHARACTERISTICS FOR 3.3 V SUPPLY

Symbol	Description	Min	Тур	Max	Unit
CLKIN	Input Frequency	13		30	MHz
ModOUT	Output Frequency	13		30	MHz
f _d	Frequency Deviation Input Frequency = 13 MHz Input Frequency = 30 MHz			±1.20 ±0.47	%
t _{LH} (Note 6)	Output Rise Time (measured at 0.8 V to 2.0 V)	0.4	1.2	1.5	ns
t _{HL} (Note 6)	Output Fall Time (measured at 2.0 V to 0.8 V)	0.3	0.8	1.1	ns
t _{JC}	Jitter (Cycle-to-Cycle)			200	ps
t _D	Output Duty Cycle	45	50	55	%

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

6. t_{LH} and t_{HL} are measured at capacitive load of 15 pF.

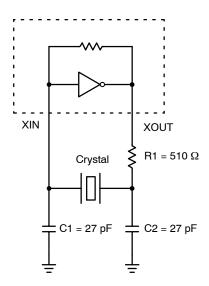


Figure 4. Typical Crystal Oscillator Circuit

Table 8. TYPICAL CRYSTAL SPECIFICATIONS

Fundamental AT Cut Parallel Resonant Crystal			
Nominal Frequency	14.31818 MHz		
Frequency Tolerance	±50 ppm or better at 25°C		
Operating Temperature Range	-25°C to +85°C		
Storage Temperature	-40°C to +85°C		
Load Capacitance	18 pF		
Shunt Capacitance	7 pF Maximum		
ESR	25 Ω		

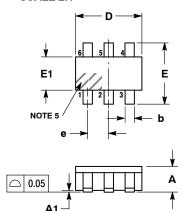
ORDERING INFORMATION

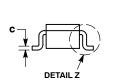
Device	Marking	Temperature Range	Package	Shipping [†]	Availability
NB2870ASNR2	E09	0°C – 70°C	TSOP-6 (TSOT-23-6)	2500 Tape & Reel	Now
NB2870ASNR2G	E09	0°C – 70°C	TSOP-6 (TSOT-23-6) (Pb-Free)	2500 Tape & Reel	Contact Sales Representative

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TSOP-6 CASE 318G-02 **ISSUE V**

12


C SEATING PLANE


DATE 12 JUN 2012

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- LEAD THIORNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
 PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.90	1.00	1.10		
A1	0.01	0.06	0.10		
b	0.25	0.38	0.50		
С	0.10	0.18	0.26		
D	2.90	3.00	3.10		
E	2.50	2.75	3.00		
E1	1.30	1.50	1.70		
е	0.85	0.95	1.05		
L	0.20	0.40	0.60		
L2	0.25 BSC				
84	0.0		4.00		

DETAIL Z

Н

TYLE 1:	STYLE 2:
PIN 1. DRAIN	PIN 1. EMITTER 2
2. DRAIN	2. BASE 1
3. GATE	3. COLLECTOR 1
4. SOURCE	4. EMITTER 1
5. DRAIN	5. BASE 2
6. DRAIN	6. COLLECTOR 2
TYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C	

COLLECTOR

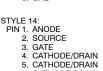
6. EMITTER

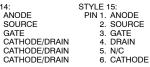
2. SOURCE 2

3. GATE 2

4. DRAIN 2

DRAIN 1


STYLE 13: PIN 1. GATE 1


5. SOURCE 1

S

S

YLE 8	3:
PIN 1.	Vbus
2.	D(in)
3.	D(in)+
4.	D(out)+
5.	D(out)
6.	GND

S

۷.	IV/C
3.	R BOOST
4.	Vz
5.	V in
6.	V out
TYLE 9):
PIN 1.	LOW VOLTAGE GATE
2.	DRAIN
3	SOURCE

STYLE 3: PIN 1. ENABLE 2. N/C

4. DRAIN

HIGH V

OLTAGE GATE	4. D(IN)- 5. VBUS 6. D(IN)+
STYLE 1	6: ANODE/CATH

PIN 1.	ANODE/CATHODE
2.	BASE
3.	EMITTER
4.	COLLECTOR
5.	ANODE
6.	CATHODE

STYLE 4: PIN 1. N/C

STYLE 10:

2. V in

3. NOT USED 4. GROUND

5. ENABLE 6. LOAD 6. COLLECTOR 2 STYLE 11: PIN 1. D(OUT)+ PIN 1. SOURCE 1 2. GND 3. D(OUT)-(IN)-BUS

2. DRAIN 2 DRAIN 2 4 SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2

STYLE 17: PIN 1. EMITTER

2. BASE 3 ANODE/CATHODE

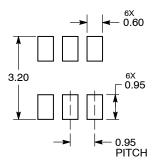
CATHODE

COLLECTOR

STYLE 5: PIN 1. EMITTER 2

2. BASE 2

BASE 1


3. COLLECTOR 1 4. EMITTER 1

STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR

3. BASE 4. EMITTER

5. COLLECTOR 6. COLLECTOR

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSIONS: MILLIMETERS

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code Α =Assembly Location

", may or may not be present.

Υ = Year

W = Work Week = Pb-Free Package XXX = Specific Device Code

M = Date Code = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98ASB14888C Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** TSOP-6 **PAGE 1 OF 1**

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Sh

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative