NPN Epitaxial Silicon Transistor

KSD1616A

Features

- Audio Frequency Power Amplifier and Medium Speed Switching
- Complement to KSB1116/KSB1116A
- These are Pb-Free Devices

ABSOLUTE MAXIMUM RATINGS

(Values are at T_A = 25°C unless otherwise noted.)

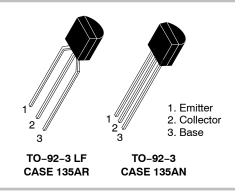
Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	120	V
V _{CEO}	Collector-Emitter Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6	V
I _C	Collector Current (DC)	1	Α
I _{CP}	Collector Current (Pulse) (Note 1)	2	Α
T _J	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

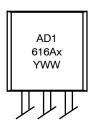
1. Pulse width ≤ 10 ms, duty cycle < 50%.

THERMAL CHARACTERISTICS

(Values are at T_A = 25°C unless otherwise noted.)


Symbol	Parameter	Max	Unit
P _D	Total Device Dissipation	0.75	W
	Derate Above 25°C	6	mW/°C
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient	160	°C/W

2. PCB size: FR-4, 76 mm \times 114 mm \times 1.57 mm (3.0 inch \times 4.5 inch \times 0.062 inch) with minimum land pattern size.



ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

A = Assembly Location D1616Ax = Specific Device Code

x = G or Y

Y = Year of Production WW = Work Week Number

ORDERING INFORMATION

Device	Package	Shipping
KSD1616AGBU	TO-92-3 (Pb-Free)	10,000 Units / Bulk Bag
KSD1616AGTA	TO-92-3 LF (Pb-Free)	2,000 Units / Fan-Fold
KSD1616AYTA	TO-92-3 LF (Pb-Free)	2,000 Units / Fan-Fold

KSD1616A

ELECTRICAL CHARACTERISTICS

(Values are at $T_A = 25^{\circ}C$ unless otherwise noted.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	120	-	-	V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 1 mA, I _B = 0	60	-	-	V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \mu A, I_C = 0$	6	-	-	V
I _{CBO}	Collector Cut-Off Current	V _{CB} = 60 V, I _E = 0	-	-	100	nA
I _{EBO}	Emitter Cut-Off Current	V _{EB} = 6 V, I _C = 0	-	-	100	nA
h _{FE1}	DC Current Gain	V _{CE} = 2 V, I _C = 100 mA	135	-	400	
h _{FE2}	DC Current Gain	V _{CE} = 2 V, I _C = 1 A	81	-	-	
V _{BE(on)}	Base-Emitter On Voltage (Note 3)	$V_{CE} = 2 \text{ V, } I_{C} = 50 \text{ mA}$	600	640	700	mV
V _{CE(sat)}	Collector–Emitter Saturation Voltage (Note 3)	I _C = 1 A, I _B = 50 mA	-	0.15	0.30	٧
V _{BE(sat)}	Base-Emitter Saturation Voltage (Note 3)	I _C = 1 A, I _B = 50 mA	-	0.9	1.2	V
C _{ob}	Output Capacitance	V _{CE} = 10 V, I _E = 0, f = 1 MHz	-	19	-	pF
f _T	Current Gain Bandwidth Product	V _{CE} = 2 V, I _C = 100 mA	100	160	-	MHz
t _{ON}	Turn-On Time	V _{CC} = 10 V, I _C = 100 mA,	-	0.07	-	μs
t _{STG}	Storage Time	$\begin{array}{c} I_{B1} = -I_{B2} = 10 \text{ mA,} \\ V_{BE(off)} = -2 \text{ V} \sim -3 \text{ V} \end{array}$	-	0.95	-	μs
t _F	Fall Time		-	0.07	_	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Pulse test: pulse width < 350 μ s, duty cycle \leq 2% pulsed.

hFE CLASSIFICATION

Classification	Υ	G	
hFE1	135 ~ 270	200 ~ 400	

KSD1616A

TYPICAL PERFORMANCE CHARACTERISTICS

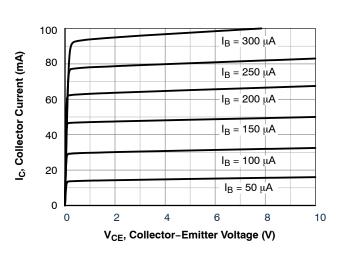


Figure 1. Static Characteristic

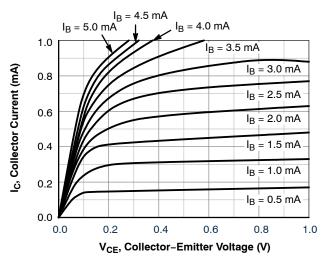


Figure 2. Static Characteristic

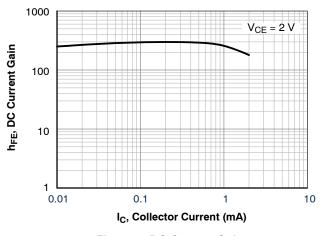


Figure 3. DC Current Gain

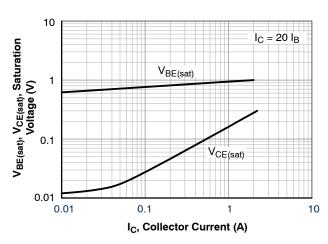


Figure 4. Base-Emitter Saturation Voltage and Collector-Emitter Saturation Voltage

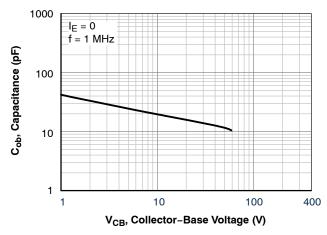


Figure 5. Collector Output Capacitance

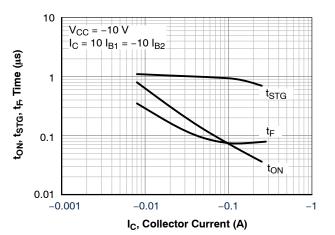


Figure 6. Switching Time

KSD1616A

TYPICAL CHARACTERISTICS (continued)

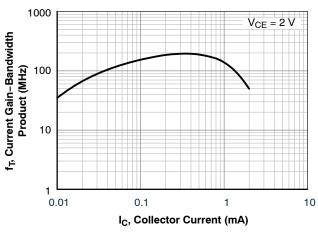


Figure 7. Current Gain Bandwidth Product

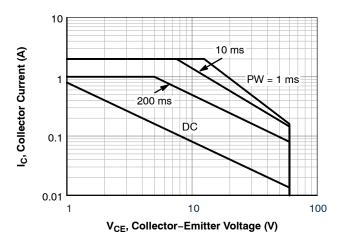


Figure 8. Safe Operating Area

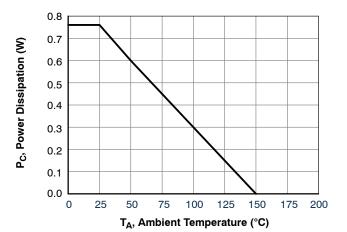
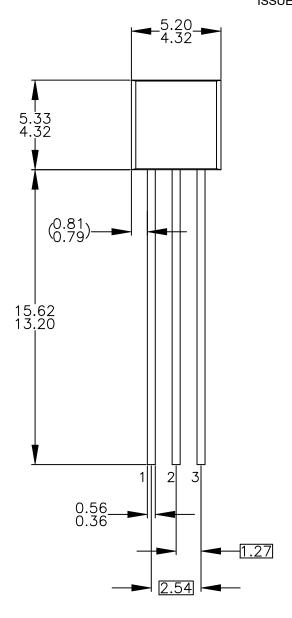
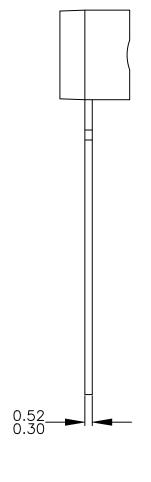
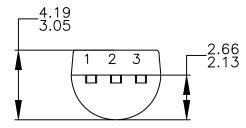




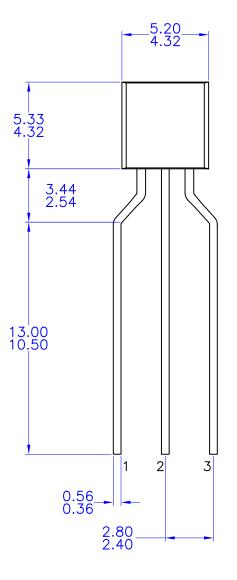
Figure 9. Power Derating

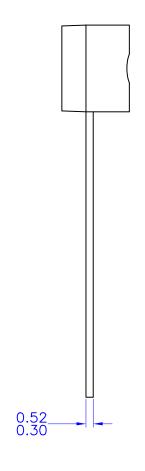
TO-92 3 4.825x4.76 CASE 135AN ISSUE O


DATE 31 JUL 2016

NOTES: UNLESS OTHERWISE SPECIFIED

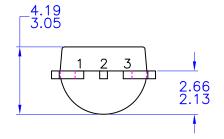
- DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS. A)
- ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M—2009.


DOCUMENT NUMBER:	98AON13880G	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 3 4.825X4.76		PAGE 1 OF 1


ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 3 4.83x4.76 LEADFORMED

CASE 135AR ISSUE O


DATE 30 SEP 2016

NOTES: UNLESS OTHERWISE SPECIFIED

- A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DRAWING CONFORMS TO ASME Y14.5M-1994

DOCUMENT NUMBER:	98AON13879G	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 3 4.83X4.76 LEADFORMED		PAGE 1 OF 1

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative