ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC14049UB

Hex Buffers

The MC14049UB hex inverter/buffer is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. This complementary MOS device finds primary use where low power dissipation and/or high noise immunity is desired. This device provides logic-level conversion using only one supply voltage, V_{DD}. The input-signal high level $\left(\mathrm{V}_{\mathrm{IH}}\right)$ can exceed the V_{DD} supply voltage for logic-level conversions. Two TTL/DTL Loads can be driven when the device is used as CMOS-to-TTL/DTL converters ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}} \leq 0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}} \geq 3.2 \mathrm{~mA}$). Note that pins 13 and 16 are not connected internally on this device; consequently connections to these terminals will not affect circuit operation.

Features

- High Source and Sink Currents
- High-to-Low Level Converter
- Supply Voltage Range $=3.0 \mathrm{~V}$ to 18 V
- Meets JEDEC UB Specifications
- $V_{\text {IN }}$ can exceed $V_{\text {DD }}$
- Improved ESD Protection on All Inputs
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage Range (DC or Transient)	-0.5 to +18.0	V
$\mathrm{~V}_{\text {out }}$	Output Voltage Range (DC or Transient)	-0.5 to V_{DD} +0.5	V
$\mathrm{I}_{\text {in }}$	Input Current (DC or Transient) per Pin	± 10	mA
$\mathrm{I}_{\text {out }}$	Output Current (DC or Transient) per Pin	+45	mA
P_{D}	Power Dissipation, per Package (Note 1) Plastic SOIC	825	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: All Packages: See Figure 4.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields referenced to the $\mathrm{V}_{\text {SS }}$ pin, only. Extra precautions must be taken to avoid applications of any voltage higher than the maximum rated voltages to this high-impedance circuit. For proper operation, the ranges $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {in }} \leq 18 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {out }} \leq \mathrm{V}_{\mathrm{DD}}$ are recommended.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

$\mathrm{V}_{\mathrm{DD}}[$	$1 \bullet$	16	NC
$\mathrm{OUT}_{\text {A }}$ L	2	15	OUT $_{F}$
IN_{A}	3	14	IN_{F}
OUTBL	4	13	NC
$1 \mathrm{~N}_{\mathrm{B}} \mathrm{C}$	5	12	$\mathrm{OUT}_{\mathrm{E}}$
$\mathrm{OUT}_{C} \mathrm{C}$	6	11	IN_{E}
$\mathrm{IN}_{\mathrm{C}} \mathrm{C}$	7	10	$1 \mathrm{OUT}_{\text {d }}$
$\mathrm{V}_{\text {SS }}$	8		IN_{D}

Figure 1. Pin Assignment

Figure 2. Logic Diagram MC14049UB

Figure 3. Circuit Schematic
(1/6 of circuit shown)

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$ "1" Level $\mathrm{V}_{\mathrm{in}}=0 \text { or } \mathrm{V}_{\mathrm{DD}}$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
Input Voltage "0" Level $\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \mathrm{Vdc}\right) \end{aligned}$ "1" Level $\begin{gathered} \left(\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{Vdc}\right) \end{gathered}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.0 \\ 8.0 \\ 12.5 \end{gathered}$	-	$\begin{gathered} 4.0 \\ 8.0 \\ 12.5 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 4.0 \\ 8.0 \\ 12.5 \end{gathered}$	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	IOH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} -1.6 \\ -1.6 \\ -4.7 \end{array}$	-	$\begin{gathered} -1.25 \\ -1.3 \\ -3.75 \end{gathered}$	$\begin{aligned} & -2.5 \\ & -2.6 \\ & -10 \end{aligned}$	-	$\begin{aligned} & -1.0 \\ & -1.0 \\ & -3.0 \end{aligned}$	-	mAdc
$\begin{array}{ll} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) & \text { Sink } \\ \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	lOL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.75 \\ 10 \\ 30 \end{gathered}$	-	$\begin{aligned} & \hline 3.2 \\ & 8.0 \\ & 24 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 16 \\ & 40 \end{aligned}$	-	$\begin{aligned} & \hline 2.6 \\ & 6.6 \\ & 19 \end{aligned}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	$\begin{gathered} \pm 0.000 \\ 01 \end{gathered}$	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance ($\mathrm{V}_{\text {in }}=0$)	$\mathrm{C}_{\text {in }}$	-	-	-	-	10	20	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 0.002 \\ & 0.004 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$	-	$\begin{gathered} 30 \\ 60 \\ 120 \end{gathered}$	$\mu \mathrm{Adc}$
Total Supply Current (Note 3 and 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	I_{T}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(1 \\ & \mathrm{I}_{\mathrm{T}}=(3 \\ & \mathrm{I}_{\mathrm{T}}=(5 \end{aligned}$	$\begin{aligned} & 8 \mu \mathrm{~A} / \mathrm{kHz}) \\ & 5 \mu \mathrm{~A} / \mathrm{kHz}) \\ & 3 \mu \mathrm{~A} / \mathrm{kHz}) \end{aligned}$	$\begin{aligned} & +\mathrm{I}_{\mathrm{DD}} \\ & +\mathrm{I}_{\mathrm{DD}} \\ & +\mathrm{I}_{\mathrm{DD}} \end{aligned}$			$\mu \mathrm{Adc}$

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{T}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right) \text { Vfk }
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.002$.

SWITCHING CHARACTERISTICS (Note 5) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	Unit
$\begin{aligned} & \text { Output Rise Time } \\ & \mathrm{t}_{\mathrm{TLH}}=(0.8 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+60 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.3 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+35 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.27 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+26.5 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {the }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 160 \\ 100 \\ 60 \end{gathered}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{THL}}=(0.3 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.12 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+14 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}$ HL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 40 \\ & 20 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 40 \\ & 30 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline \text { Propagation Delay Time } \\ & \text { t PLH }=(0.38 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+61 \mathrm{~ns} \\ & \text { t }_{\text {PLH }}=(0.20 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{t}_{\text {PLH }}=(0.11 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+24.5 \mathrm{~ns} \end{aligned}$	tple	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	$\begin{gathered} 120 \\ 65 \\ 50 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \hline \text { Propagation Delay Time } \\ & \text { t PHL }=(0.38 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+11 \mathrm{~ns} \\ & \mathrm{t}_{\text {PHL }}=(0.12 \mathrm{~ns} / \mathrm{PF}) \mathrm{C}_{\mathrm{L}}+9 \mathrm{~ns} \\ & \mathrm{t}_{\text {PHL }}=(0.11 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+4.5 \mathrm{~ns} \end{aligned}$	$t_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 30 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14049UBDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14049UBDG*	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC14049UBDR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV14049UBDR2G*	SOEIAJ-16 (Pb-Free)	$2000 /$ Tape \& Reel
MC14049UBDTR2G	MC14049UBFELG	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

Figure 4. Typical Voltage Transfer Characteristics versus Temperature

Figure 5. Typical Output Source Characteristics

Figure 6. Typical Output Sink Characteristics

Figure 8. Switching Time Test Circuit and Waveforms

PACKAGE DIMENSIONS

SOIC-16
D SUFFIX
CASE 751B-05
ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
5. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PE
6. DIMENSION D DOES NOT INCLUDE DAMBAR

DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE $0.127(0.005)$ TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	9.80	10.00	0.386	0.393		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27		BSC	0.050		BSC
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0	7°	0	0°		
P	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-16
 DT SUFFIX
 CASE 948F
 ISSUE B

 details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOEIAJ-16
F SUFFIX
CASE 966
ISSUE A

DETAIL P

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER DAMBAR CANNOT BE LOCATED ON THE RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRU
TO BE 0.46 (0.018).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	---	2.05	---	0.081
$\mathbf{A}_{\mathbf{1}}$	0.05	0.20	0.002	0.008
\mathbf{b}	0.35	0.50	0.014	0.020
\mathbf{c}	0.10	0.20	0.007	0.011
\mathbf{D}	9.90	10.50	0.390	0.413
\mathbf{E}	5.10	5.45	0.201	
\mathbf{e}	1.27 BSC		0.215	
$\mathrm{H}_{\mathbf{E}}$	7.40	8.20	0.050	
\mathbf{L}	0.50	0.85	0.020	0.323
$\mathbf{L}_{\mathbf{E}}$	1.10	1.50	0.043	0.033
\mathbf{M}	0°	10°	0.059	
\mathbf{Q}_{1}	0.70	0.90	0.028	10°
\mathbf{Z}	---	0.78	---	0.035

> ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns ine rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

