ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Bi-Quinary Counter

The MC10138 is a four bit counter capable of divide by two, five, or ten functions. It is composed of four set—reset master—slave flip—flops. Clock inputs trigger on the positive going edge of the clock pulse.

Set or reset input override the clock, allowing asynchronous "set" or "clear." Individual set and common reset inputs are provided, as well as complementary outputs for the first and fourth bits.

- $P_D = 370 \text{ mW typ/pkg (No Load)}$
- $f_{tog} = 150 \text{ MHz typ}$
- t_r , $t_f = 2.5$ ns typ (20%–80%)

DIP PIN ASSIGNMENT

Pin assignment is for Dual–in–Line Package.
For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS

CDIP-16 L SUFFIX CASE 620

PDIP-16 P SUFFIX CASE 648

PLCC-20 FN SUFFIX CASE 775

A = Assembly Location

WL = Wafer Lot YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MC10138L	CDIP-16	25 Units / Rail
MC10138P	PDIP-16	25 Units / Rail
MC10138FN	PLCC-20	46 Units / Rail

COUNTER TRUTH TABLES

BI-QUINARY

(Clock connected to C2 and $\overline{Q3}$ connected to C1)

(Clock connected to C1 and Q0 connected to C2)

COUNT	Q1	Q2	Q3	Q0
0	L	L	L	L
1	Н	L	L	L
2	L	Н	L	L
3	Н	Н	L	L
4	L	L	Н	L
5	L	L	L	Н
6	Н	L	L	Н
7	L	Н	L	Н
8	Н	Н	L	Н
9	L	L	Н	Н

COUNT	Q	Q1	Q2	Q3
0	L	L	L	L
1	Н	L	L	L
2	L	Н	L	L
3	Н	Н	L	L
4	L	L	Н	L
5	Н	L	Н	L
6	L	Н	Н	L
7	Н	Н	Н	L
8	L	L	L	Н
9	Н	L	L	Н

COUNTER STATE DIAGRAM — POSITIVE LOGIC

ELECTRICAL CHARACTERISTICS

			Test Limits							
		Pin Under	-30°C +25°C +85°C			5°C				
Characteristic	Symbol	Test	Min	Max	Min	Тур	Max	Min	Max	Unit
Power Supply Drain Current	Ι _Ε	8		97		70	88		97	mAdc
Input Current	l _{inH}	12 5,6,10,11 7 9		350 390 460 650			220 245 290 410		220 245 290	μAdc
	I _{inL}	All	0.5		0.5			0.3		μAdc
Output Voltage Logic 1	V _{OH}	3,14 (3.) 2,4,13,15 (2.)	-1.060 -1.060	-0.890 -0.890	-0.960 -0.960		-0.810 -0.810	-0.890 -0.890	-0.700 -0.700	Vdc
Output Voltage Logic 0	V _{OL}	3,14 (2.) 2,4,13,15 (3.)	-1.890 -1.890	-1.675 -1.675	-1.850 -1.850		-1.650 -1.650	-1.825 -1.825	-1.615 -1.615	Vdc
Threshold Voltage Logic 1	V _{OHA}	2,4,13,15 (2.) 3,14 (3.) 13,15 (2.)	-1.080 -1.080 -1.080		-0.980 -0.980 -0.980			-0.910 -0.910 -0.910	S	Vdc
Threshold Voltage Logic 0	V _{OLA}	2,4,13,15 (3.) 3,14 (2.) 13,15 (3.)		-1.655 -1.655 -1.655			-1.630 -1.630 -1.630	7	-1.595 -1.595 -1.595	Vdc
Switching Times (50 Ω Load)										ns
Propagation Clock Delays Delay	t ₁₂₊₁₅₊ t ₁₂₊₁₄₊ t ₇₊₁₃₊ t ₇₊₄₊ t ₇₊₂₊ t ₇₊₃₊ t ₁₂₊₁₅₋ t ₁₂₊₁₄₋ t ₇₊₁₃₋ t ₇₊₄₋ t ₇₊₂₋ t ₇₊₃₋	15 14 13 4 2 3 15 14 13 4 2 3	1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	5.0 5.0 5.2 5.2 5.2 5.2 5.0 5.0 5.0 5.2 5.2 5.2 5.2	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	4.8 4.8 5.0 5.0 5.0 5.0 4.8 4.8 5.0 5.0 5.0	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	5.3 5.5 5.5 5.5 5.5 5.3 5.3 5.5 5.5 5.5	
Set Delay	t ₁₁₊₁₅₊ t ₁₁₊₁₄	15 14	1.4 1.4	5.2 5.2	1.5 1.5		5.0 5.0	1.5 1.5	5.5 5.5	
Reset Delay	t ₉₊₁₄₊ t ₉₊₁₅₋	14 15	1.4 1.4	5.2 5.2	1.5 1.5		5.0 5.0	1.5 1.5	5.5 5.5	
Rise Time (20 to 80%)	t ₁₄₊ t ₁₅₊	14 15	1.1 1.1	4.7 4.7	1.1 1.1	2.5 2.5	4.5 4.5	1.1 1.1	5.0 5.0	
Fall Time (20 to 80%)	t ₁₄₋ t ₁₅₋	14 15	1.1 1.1	4.7 4.7	1.1 1.1	2.5 2.5	4.5 4.5	1.1 1.1	5.0 5.0	
Counting Frequency	f _{count}	2 15	125 125		125 125	150 150		125 125		MHz

Individually test each input; apply V_{ILmin} to pin under test.

ELECTRICAL CHARACTERISTICS (continued)

NOTE: Each MECL 10,000 series circuit has been designed to meet the dc specifications				TEST VOL	TAGE VALU	JES (Volts)		
shown in the test table, after thermal equilibrium has been established. The circuit	@ Test	Temperature	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	
is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are	−30°C		-0.890	-1.890	-1.205	-1.500	-5.2	
terminated through a 50–ohm resistor to –2.0 volts. Test procedures are shown for only one	+25°C		-0.810	-1.850	-1.105	-1.475	-5.2	
gate. The other gates are tested in the same manner.		+85°C	-0.700	-1.825	-1.035	-1.440	-5.2	
		Pin	TEST V	OLTAGE AP	PLIED TO P	INS LISTED	BELOW	
Characteristic	Symbol	Under Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{EE}	(V _{CC}) Gnd
Power Supply Drain Current	Ι _Ε	8	9				8	1, 16
Input Current	l _{inH}	12 5,6,10,11 7 9	12 5,6,10,11 7 9				8 8 8	1, 16 1, 16 1, 16 1, 16
	I _{inL}	All		Note 1.			8	1, 16
Output Voltage Logic 1	V _{OH}	3,14 (3.) 2,4,13,15 (2.)	9 5,6,10,11				8 8	1, 16 1, 16
Output Voltage Logic 0	V _{OL}	3,14 (2.) 2,4,13,15 (3.)	5,6,10,11 9			N.	8 8	1, 16 1, 16
Threshold Voltage Logic 1	V _{OHA}	2,4,13,15 (2.) 3,14 (3.) 13,15 (2.)			5,6,10,11 9 7,12		8 8 8	1, 16 1, 16 1, 16
Threshold Voltage Logic 0	V _{OLA}	2,4,13,15 (3.) 3,14 (2.) 13,15 (3.)			O. T.	5,6,10,11 9 7,12	8 8 8	1, 16 1, 16 1, 16
Switching Times (50Ω Load)				V (Pulse In	Pulse Out	-3.2 V	+2.0 V
Propagation Delay Clock Delays	t ₁₂₊₁₅₊ t ₁₂₊₁₄₊ t ₇₊₁₃₊ t ₇₊₄₊ t ₇₊₂₊ t ₇₊₃₊ t ₁₂₊₁₅₋ t ₁₂₊₁₄₋ t ₇₊₁₃₋ t ₇₊₄₋ t ₇₊₂₋ t ₇₊₃₋	15 14 13 4 2 3 15 14 13 4 2			12 12 7 7 7 7 12 12 7 7	15 14 13 4 2 3 15 14 13 4 2	8 8 8 8 8 8 8 8 8	1, 16 1, 16 1, 16 1, 16 1, 16 1, 16 1, 16 1, 16 1, 16 1, 16 1, 16 1, 16
Set Delay	t ₁₁₊₁₅₊ t ₁₁₊₁₄₋	15 14			11 11	15 14	8 8	1, 16 1, 16
Reset Delay	t ₉₊₁₄₊ t ₉₊₁₅₋	14 15			9 9	14 15	8 8	1, 16 1, 16
Rise Time (20 to 80%)	t ₁₄₊ t ₁₅₊	14 15			11 11	14 15	8 8	1, 16 1, 16
Fall Time (20 to 80%)	t ₁₄₋ t ₁₅₋	14 15			9 9	14 15	8 8	1, 16 1, 16
Counting Frequency	f _{count}	2 15			7 12	2 15	8 8	1, 16 1, 16

1.	Individually	test each	input; apply	V_{ILmin}	to pin unde	er test.
----	--------------	-----------	--------------	-------------	-------------	----------

Set all four flip–flops by applying pulse
 V_{IHmax}
 V_{ILmin}
 V_{IHmax}
 V_{ILmin}

 V_{IHmax}

to pins 5, 6, 10, and 11 prior to applying test voltage indicated.

to pin 9 prior to applying test voltage indicated.

 $V_{\text{ILmin}} \\$

PACKAGE DIMENSIONS

PLCC-20 **FN SUFFIX**

PLASTIC PLCC PACKAGE CASE 775-02 ISSUE C

NOTES:

G1 ⊕ 0.010 (0.250)③ T L-M ⑤ N ⑤

OF MICE. NOT PERSON

- OTES:

 1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.

 3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.

 4. DIMENSIONING AND TOLERANCING PER ANSI V14 5M 1982
- Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INC	HES	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.385	0.395	9.78	10.03	
В	0.385	0.395	9.78	10.03	
С	0.165	0.180	4.20	4.57	
Е	0.090	0.110	2.29	2.79	
F	0.013	0.019	0.33	0.48	
G	0.050	BSC	1.27	BSC	
Н	0.026	0.032	0.66	0.81	
J	0.020		0.51		
K	0.025		0.64		
R	0.350	0.356	8.89	9.04	
U	0.350	0.356	8.89	9.04	
٧	0.042	0.048	1.07	1.21	
W	0.042	0.048	1.07	1.21	
X	0.042	0.056	1.07	1.42	
Υ		0.020		0.50	
Z	2°	10°	2 °	10 °	
G1	0.310	0.330	7.88	8.38	
K1	0.040		1.02		

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION LTO CENTER OF LEAD WHEN CONTROLLING DIMENSION LTO CENTER OF LEAD WHEN

- FORMED PARALLEL

 DIMENSION F MAY NARROW TO 0.76 (0.030)
 WHERE THE LEAD ENTERS THE CERAMIC
 BODY.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
C		0.200		5.08	
D	0.015	0.020	0.39	0.50	
E	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300 BSC		7.62	BSC	
M	0 °	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 ISSUE R

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL

	INC	HES	MILLIN	IETERS
DIM	MIN MAX		MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
Н	0.050	BSC	1.27	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10 °
S	0.020	0.040	0.51	1.01

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.