ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC10138

Bi-Quinary Counter

The MC10138 is a four bit counter capable of divide by two, five, or ten functions. It is composed of four set-reset master-slave flip-flops. Clock inputs trigger on the positive going edge of the clock pulse.

Set or reset input override the clock, allowing asynchronous "set" or "clear." Individual set and common reset inputs are provided, as well as complementary outputs for the first and fourth bits.

- $\mathrm{P}_{\mathrm{D}}=370 \mathrm{~mW}$ typ/pkg (No Load)
- $\mathrm{f}_{\text {tog }}=150 \mathrm{MHz}$ typ
- $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns} \operatorname{typ}(20 \%-80 \%)$

LOGIC DIAGRAM

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

ON Semiconductor

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC10138L	CDIP-16	25 Units / Rail
MC10138P	PDIP-16	25 Units / Rail
MC10138FN	PLCC-20	46 Units / Rail

MC10138

COUNTER TRUTH TABLES

BI-QUINARY
(Clock connected to C2
and $\overline{\text { Q3 }}$ connected to C1)

COUNT	Q1	Q2	Q3	Q0
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	L	L	L	H
6	H	L	L	H
7	L	H	L	H
8	H	H	L	H
9	L	L	H	H

(Clock connected to C1
and $\overline{\text { Q0 }}$ connected to C2)

COUNT	Q0	Q1	Q2	Q3
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	H	H	L
7	H	H	H	L
8	L	L	L	H
9	H	L	L	H

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	Test Limits							Unit
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		
			Min	Max	Min	Typ	Max	Min	Max	
Power Supply Drain Current	I_{E}	8		97		70	88		97	mAdc
Input Current	linH	$\begin{gathered} 12 \\ 5,6,10,11 \\ 7 \\ 9 \end{gathered}$		$\begin{aligned} & 350 \\ & 390 \\ & 460 \\ & 650 \end{aligned}$			$\begin{aligned} & 220 \\ & 245 \\ & 290 \\ & 410 \end{aligned}$		$\begin{aligned} & 220 \\ & 245 \\ & 290 \end{aligned}$	$\mu \mathrm{Adc}$
	$\mathrm{l}_{\text {inL }}$	All	0.5		0.5			0.3		$\mu \mathrm{Adc}$
Output Voltage Logic 1	V_{OH}	$\begin{gathered} 3,14 \text { (3.) } \\ 2,4,13,15(2 .) \end{gathered}$	$\begin{aligned} & -1.060 \\ & -1.060 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & -0.960 \\ & -0.960 \end{aligned}$		$\begin{aligned} & \hline-0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & \hline-0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & -0.700 \\ & -0.700 \end{aligned}$	Vdc
Output Voltage Logic 0	V_{OL}	$\begin{gathered} 3,14(\mathbf{2 .)} \\ 2,4,13,15{ }_{(3 .)} \end{gathered}$	$\begin{aligned} & \hline-1.890 \\ & -1.890 \end{aligned}$	$\begin{aligned} & -1.675 \\ & -1.675 \end{aligned}$	$\begin{aligned} & \hline-1.850 \\ & -1.850 \end{aligned}$		$\begin{aligned} & \hline-1.650 \\ & -1.650 \end{aligned}$	$\begin{aligned} & \hline-1.825 \\ & -1.825 \end{aligned}$	$\begin{aligned} & \hline-1.615 \\ & -1.615 \end{aligned}$	Vdc
Threshold Voltage Logic 1	$\mathrm{V}_{\text {OHA }}$	$\begin{gathered} 2,4,13,15(2 .) \\ 3,14(3 .) \\ 13,15(2 .) \end{gathered}$	$\begin{aligned} & \hline-1.080 \\ & -1.080 \\ & -1.080 \end{aligned}$		$\begin{aligned} & -0.980 \\ & -0.980 \\ & -0.980 \end{aligned}$			$\begin{aligned} & -0.910 \\ & -0.910 \\ & -0.910 \end{aligned}$		Vdc
Threshold Voltage Logic 0	$\mathrm{V}_{\text {OLA }}$	$\begin{gathered} \hline 2,4,13,15 \text { (3.) } \\ 3,14 \text { (2.) } \\ 13,15(3 .) \end{gathered}$		$\begin{aligned} & -1.655 \\ & -1.655 \\ & -1.655 \end{aligned}$			$\begin{array}{r} \hline-1.630 \\ -1.630 \\ -1.630 \end{array}$		$\begin{aligned} & \hline-1.595 \\ & -1.595 \\ & -1.595 \end{aligned}$	Vdc
Switching Times (50 Ω Load) Propagation Clock Delays Delay										ns
	t_{12+15+}	15	1.4	5.0	1.5	3.5	4.8	1.5	5.3	
	t_{12+14+}	14	1.4	5.0	1.5	3.5	4.8	1.5	5.3	
	t_{7+13+}	13	1.4	5.2	1.5	3.5	5.0	1.5	5.5	
	${ }^{1} 7+4+$	4	1.4	5.2	1.5	3.5	5.0	1.5	5.5	
	t_{7+2+}	2	1.4	5.2	1.5	3.5	5.0	1.5	5.5	
	t_{7+3+}	3	1.4	5.2	1.5	3.5	5.0	1.5	5.5	
	t_{12+15-}	15	1.4	5.0	1.5	3.5	4.8	1.5	5.3	
	t_{12+14-}	14	1.4	5.0	1.5	3.5	4.8	1.5	5.3	
	t_{7+13-}	13	1.4	5.2	1.5	3.5	5.0	1.5	5.5	
	t_{7+4}		1.4	5.2	1.5	3.5	5.0	1.5	5.5	
	t_{7+2-}		1.4	5.2	1.5	3.5	5.0	1.5	5.5	
	t_{7+3}		1.4	5.2	1.5	3.5	5.0	1.5	5.5	
Set Delay	t_{11+15+}		1.4	5.2	1.5		5.0	1.5	5.5	
	t_{11+14-}		1.4	5.2	1.5		5.0	1.5	5.5	
Reset Delay	${ }^{\text {t }}$ +14+		1.4	5.2	1.5		5.0	1.5	5.5	
	t_{9+15}	15	1.4	5.2	1.5		5.0	1.5	5.5	
Rise Time (20 to 80\%)	t_{14+}	14	1.1	4.7	1.1	2.5	4.5	1.1	5.0	
		15	1.1	4.7	1.1	2.5	4.5	1.1	5.0	
Fall Time (20 to 80\%)			1.1	4.7	1.1	2.5	4.5	1.1	5.0	
	t_{15}	15	1.1	4.7	1.1	2.5	4.5	1.1	5.0	
Counting Frequency	$\mathrm{f}_{\text {count }}$	2	125		125	150		125		MHz
		15	125		125	150		125		

1. Individually test each input; apply $\mathrm{V}_{\mathrm{IL} \min }$ to pin under test.
2. Set all four flip-flops by applying pulse \square

3. Reset all four flip-flops by applying pulse \square

ELECTRICAL CHARACTERISTICS (continued)

1. Individually test each input; apply $\mathrm{V}_{\text {ILmin }}$ to pin under test.
2. Set all four flip-flops by applying pulse
3. Reset all four flip-flops by applying pulse $\quad \square \quad \mathrm{V}_{1 H \max }$ to pins $5,6,10$, and 11 prior to applying test voltage indicated.

MC10138

PACKAGE DIMENSIONS

PLCC-20
FN SUFFIX
PLASTIC PLCC PACKAGE
CASE 775-02
ISSUE C

VIEW S
NOTES:

1. DATUMS -L-,-M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
2. DIMENSION G1, TRUE POSITION TO BE

MEASURED AT DATUM -T-, SEATING PLANE
3. DIMENSIONS R AND U DO NOT INCLUDE MOLD
3. DIMENSIONS R AND U DO NOT INCLUDE MOLD
FLASH. ALLOWABLE MOLD FLASH IS $0.010(0.250)$ PER SIDE.
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP INCLUDING ANY MISMATCH BETWEEN
7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

MC10138

PACKAGE DIMENSIONS

PDIP-16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648-08
ISSUE R

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.740	0.770	18.80	19.55	
B	0.250	0.270	6.35	6.85	
C	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100		BSC	2.54 BSC	
H	0.050 BSC		1.27		
BSC					
J	0.008	0.015	0.21		

Notes

> ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

