ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

NTQD4154Z

Power MOSFET

20 V, 7.5 A, Common-Drain, Dual N-Channel TSSOP-8

Features

- Common Drain for Ease of Circuit Connection
- Low R_{DS(on)} Extending Battery Life
- ESD Protected Gate
- Pb-Free Package is Available

Applications

- Li-Ion Battery Protection Circuit
- Power Management in Portable and Battery-Powered Products

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

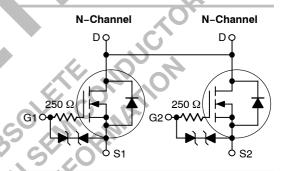
Parameter			Symbol	Value	Units
Drain-to-Source Voltage			V _{DSS}	20	V
Gate-to-Source Voltage	Gate-to-Source Voltage			±12	V
Continuous Drain	Steady	T _A = 25°C	I _D	7.5	A
Current (Note 1)	State	T _A = 75°C		5.8	S
Power Dissipation	T _A =	25°C	P_{D}	1.52	W
(Note 1)					
Continuous Drain Current (Note 2)	t ≤[]0 s	T _A = 25°C	I _D	9.8	A
Current (Note 2)		T _A = 75°C		7.6	
Power Dissipation (Note 2)	t ≤ []0 s	T _A = 25°C	P_{D}	2.6	W
Pulsed Drain Current	tp =	10 μs	I _{DM}	30	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode)			İs	2.2	Α
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Ambient - Steady State	$R_{\theta JA}$	82	°C/W
Junction-to-Ambient - t ≤[] 0 s	$R_{\theta JA}$	48	

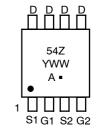
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1


- 1. Mounted onto a 2" square FR-4 board
- (1 in sq, 2 oz. cu. 0.06" thick single-sided), steady state.
- 2. Mounted onto a 2" square FR-4 board (1 in sq, 2 oz. cu. 0.06" thick single-sided), t ≤ 0 os.

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
20 V	15 mΩ @ 4.5 V	7.5 A
20 0	21 mΩ @ 2.5 V	7.5 A

MARKING DIAGRAM & PIN ASSIGNMENT

TSSOP-8 CASE 948S PLASTIC

54Z = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTQD4154ZR2	TSSOP-8	4000 / Tape & Reel
NTQD4154ZR2G	TSSOP-8 (Pb-Free)	4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTQD4154Z

ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				12		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 16 V	$T_J = 25^{\circ}C$			1.0	μΑ
		V _{DS} = 16 V	T _J = 125°C			25	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±4.5 V			±1.0	μΑ
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μΑ	0.6		1.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.1		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V, I _C) = 7.5 A		15	19	mΩ
		V _{GS} = 2.5 V, I _D) = 5.5 A		21	26	
Forward Transconductance	9FS	$V_{GS} = 10 \text{ V}, I_{D} = 7.5 \text{ A}$			46	•	S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}			~~	1485		pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = 1$ $V_{DS} = 16$	I.0 MHz,	⟨√	220	,	
Reverse Transfer Capacitance	C _{RSS}	VD3 = 1.5		N. 10	175		
Total Gate Charge	Q _{G(TOT)}		25		21.5		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V. V _D	s = 10 V.	0,0	4.0		_
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V},$ $I_{D} = 7.5 \text{ A}$			6.0		1
Gate-to-Drain Charge	Q_{GD}				5.5		
SWITCHING CHARACTERISTICS (No	ote 4)	'(C), ',	0.7				
Turn-On Delay Time	t _{d(ON)}	(7), (0)	1.8		0.2		μs
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{D}$	n = 10 V.		0.5		
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 7.5 \text{ A}, R_G = 6.0 \Omega$			1.12		
Fall Time	t _f				0.86		
DRAIN-SOURCE DIODE CHARACTE	RISTICS (Note	3)					
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 6.5 A	T _J = 25°C		0.8	1.2	V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{SD}/dt = 100 \text{ A}/\mu\text{s}$ $I_{S} = 6.5 \text{ A}$			1.02		μs
7.5	ta				0.32		7
	t _b				0.7		7
X ·	Q _{RR}				11.6		μC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

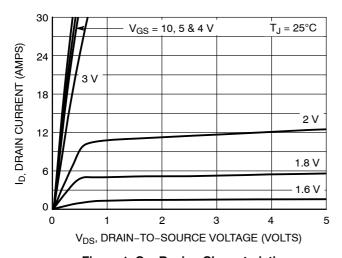


Figure 1. On-Region Characteristics

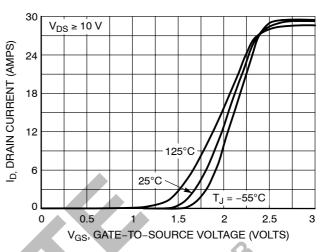


Figure 2. Transfer Characteristics

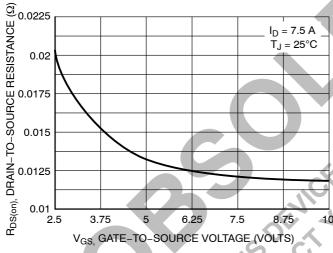


Figure 3. On-Resistance vs. Gate-to-Source Voltage

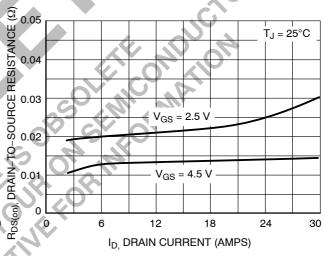


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

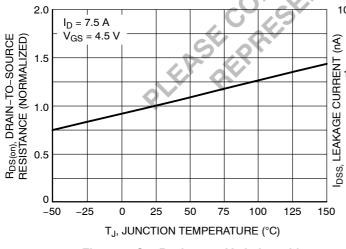


Figure 5. On–Resistance Variation with Temperature

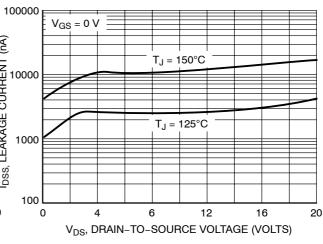


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

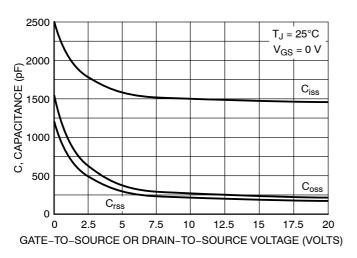


Figure 7. Capacitance Variation

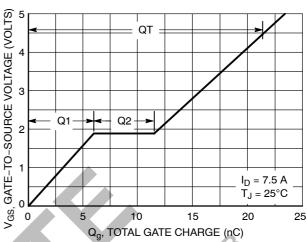


Figure 8. Gate-to-Source Voltage vs. Total Gate Charge



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

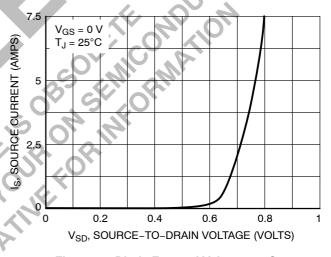


Figure 10. Diode Forward Voltage vs. Current

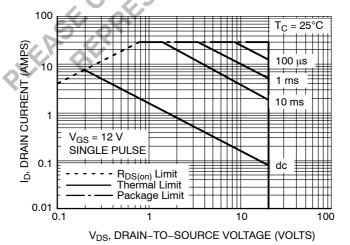
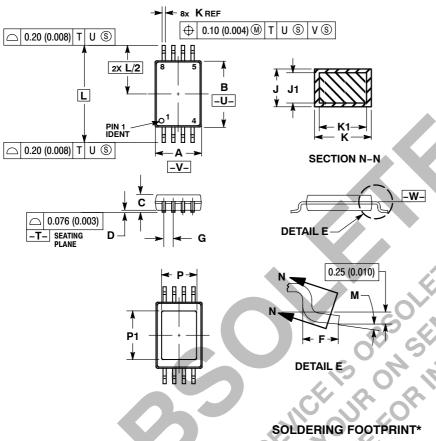



Figure 11. Maximum Rated Forward Biased Safe Operating Area

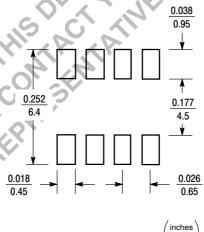
NTQD4154Z

PACKAGE DIMENSIONS

TSSOP-8 CASE 948S-01 **ISSUE A**

NOTES:

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS, MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- (U.JUO) FER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

MILLIMETERS		INCHES		
MIN	MAX	MIN	MAX	
2.90	3.10	0.114	0.122	
4.30	4.50	0.169	0.177	
	1.10		0.043	
0.05	0.15	0.002	0.006	
0.50	0.70	0.020	0.028	
0.65 BSC		0.026 BSC		
0.09	0.20	0.004	0.008	
0.09	0.16	0.004	0.006	
0.19	0.30	0.007	0.012	
0.19	0.25	0.007	0.010	
6.40 BSC		0.252).252 BSC	
0 °	8°	0°	8°	
	2.20		0.087	
-11-	3.20		0.126	
	MIN 2.90 4.30 0.05 0.50 0.65 0.09 0.19 0.19 6.40	MIN MAX 2.90 3.10 4.30 4.50 1.10 0.05 0.15 0.50 0.70 0.05 0.87 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0.9 8° 2.20	MIN MAX MIN 2.90 3.10 0.114 4.30 4.50 0.169 1.10 1.10 0.05 0.15 0.002 0.50 0.70 0.020 0.65 BSC 0.026 0.09 0.20 0.004 0.09 0.16 0.004 0.09 0.19 0.30 0.007 0.19 0.25 0.007 6.40 BSC 0.252 0 0 8 0 0 2.20	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and

mm

Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative