Power MOSFET 20 V, 4.5 A, Dual N–Channel, ChipFET[™]

Features

- Low R_{DS(on)} and Fast Switching Speed
- Leadless ChipFET Package has 40% Smaller Footprint than TSOP–6. Ideal Device for Applications Where Board Space is at a Premium.
- ChipFET Package Exhibits Excellent Thermal Capabilities. Ideal for Applications Where Heat Transfer is Required.
- Pb-Free Packages are Available

Applications

- DC–DC Buck or Boost Converters
- Low Side Switching
- Optimized for Battery and Low Side Switching Applications in Computing and Portable Equipment

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

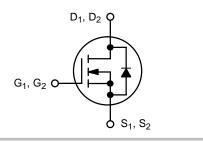
Parame	Symbol	Value	Unit							
Drain-to-Source Voltage	V _{DSS}	20	V							
Gate-to-Source Voltage	Gate-to-Source Voltage									
Continuous Drain	Sleady A == -				А					
Current (Note 1)	State	T _A =85°C		2.4						
	t ≤ 5 s	T _A =25°C		4.5						
Power Dissipation (Note 1)	Steady State	T _A =25°C	PD	1.13	W					
Continuous Drain		T _A =25°C	I _D	2.5	А					
Current (Note 2)	Steady	T _A =85°C		1.8						
Power Dissipation (Note 2)	State	State	State	State	State	State	T _A =25°C	PD	0.64	W
Pulsed Drain Current	t _p =10 μ	S	I _{DM}	10	А					
Operating Junction and S	T _J , T _{STG}	–55 to 150	°C							
Source Current (Body Die	I _S	2.6	А							
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C					

THERMAL RESISTANCE RATINGS

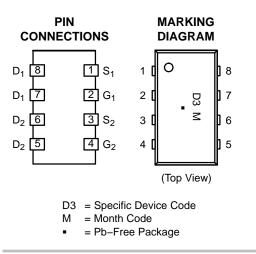
Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	110	°C/W
Junction–to–Ambient – t \leq 5 s (Note 1)	$R_{\theta JA}$	60	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	195	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
- Surface Mounted on FR4 Board using the minimum recommended pad size (Cu area = 0.214 in sq).
- 3. ESD Rating Information: Human Body Model (HBM) Class 0.



ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
20 V	40 mΩ @ 4.5 V	4.5 A	
	55 mΩ @ 2.5 V	4.077	

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

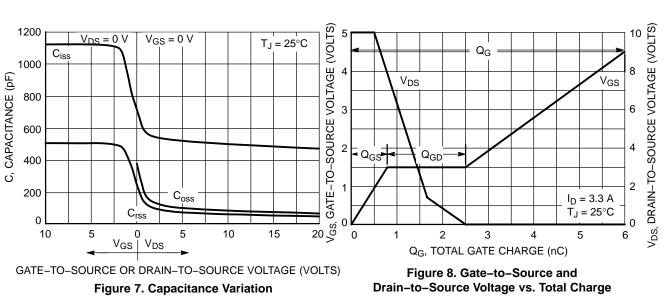
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
OFF CHARACTERISTICS		-			-	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V	20			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, V_{DS} = 16 V$			1.0	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = 16 \text{ V}, T_{J} = 125^{\circ}\text{C}$			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 8.0 V$			±100	nA
ON CHARACTERISTICS (Note 4)		-			-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$	0.6	0.75	1.2	V
Drain-to-Source On-Resistance	R _{DS(on)}	V_{GS} = 4.5 V, I _D = 3.3 A		40	65	mΩ
		V_{GS} = 2.5 V, I _D = 2.3 A		55	105	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 3.3 A		6.0		S
CHARGES AND CAPACITANCES		·		•	•	
Input Capacitance	C _{iss}			465		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 16 V		65		
Reverse Transfer Capacitance	C _{rss}	VDS = 10 V		30		
Total Gate Charge	Q _{G(TOT)}			4.0		nC
Threshold Gate Charge	Q _{G(TH)}	V_{GS} = 2.5 V, V_{DS} = 16 V, I _D = 3.3 A		0.4		
Gate-to-Source Charge	Q _{GS}			0.8		
Gate-to-Drain Charge	Q _{GD}	1		2.0		
Total Gate Charge	Q _{G(TOT)}			6.0		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 10 V,		0.5		
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = 3.3 \rm{A}$		0.8		
Gate-to-Drain Charge	Q _{GD}			1.7		
SWITCHING CHARACTERISTICS (No				4	•	
Turn-On Delay Time	t _{d(on)}			6.0		ns
Rise Time	t _r	$V_{00} = 45 V V_{00} = 16 V$		17		
Turn-Off Delay Time	t _{d(off)}	V_{GS} = 4.5 V, V_{DS} = 16 V, I _D = 3.3 A, R _G = 2.5 Ω		17		
Fall Time	t _f			5.1		
DRAIN-SOURCE DIODE CHARACTE	RISTICS	•			•	
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, I_{S} = 2.6 A$		0.8	1.15	V
Reverse Recovery Time	t _{RR}			19.5		ns
Charge Time	ta	V _{GS} = 0 V, I _S = 2.6 A,		6.0		
Discharge Time	t _b	$dl_{S}/dt = 100 \text{ A/}\mu\text{s}$		13	1	
Reverse Recovery Charge	Q _{RR}	1		7.0		nC

Fulse rest. Fulse Width 2 500 µs, Duty Cycle 2 276.
 Switching characteristics are independent of operating junction temperatures.

o. Ownering characteristics are independent of operating junction tempt

ORDERING INFORMATION

Device	Package	Shipping [†]
NTHD5904NT1	ChipFET	3000 / Tape & Reel
NTHD5904NT1G	ChipFET (Pb-Free)	3000 / Tape & Reel
NTHD5904NT3	ChipFET	10,000 / Tape & Reel
NTHD5904NT3G	ChipFET (Pb-Free)	10,000 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

11 11 V_{GS} = 4 V T_J = 25°C 5 \ $V_{DS} \geq 10 \ V$ 10 10 $V_{GS} = 3 V$ 1.8 V I_{D.} DRAIN CURRENT (AMPS) I_{D,} DRAIN CURRENT (AMPS) 9 9 2 4 V 8 8 7 7 6 6 1.6 V 5 5 4 4 3 3 125°C 1.4 V 2 2 25°C 1.2 V 1 [」= −55°C 0 0 0 0.5 1.5 2 0 0.5 2 2.5 3 1.5 1 1 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS) V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Figure 1. On–Region Characteristics Figure 2. Transfer Characteristics R_{DS(on)}, DRAIN-TO-SOURCE RESISTANCE (Ω) 0.06 $I_{D} = 3.3 \text{ A}$ $T_J = 25^{\circ}C$ T_J = 25°C V_{GS} = 2.5 V 0.05 0.04 V_{GS} = 4.5 V 0.03 2 3 5 6 4 2 1 3 4 5 6 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS) ID, DRAIN CURRENT (AMPS) Figure 3. On-Resistance vs. Gate-to-Source Figure 4. On–Resistance vs. Drain Current and **Gate Voltage** Voltage 10000 1.6 $I_{D} = 3.3 A$ $V_{GS} = 0 V$ V_{GS} = 2.5 V $T_{\rm J} = 150^{\circ}C$ R_{DS(on)}, DRAIN-TO-SOURCE RESISTANCE (NORMALIZED) 1.4 I_{DSS}, LEAKAGE (nA) 001 001 1.2 1.0 $T_J = 100^{\circ}C$ 0.8 0.6 10 -25 0 25 50 75 100 125 5 10 15 20 -50 150 T_J, JUNCTION TEMPERATURE (°C) V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 5. On–Resistance Variation with Temperature

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

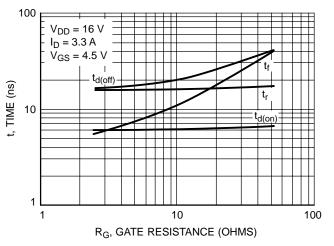
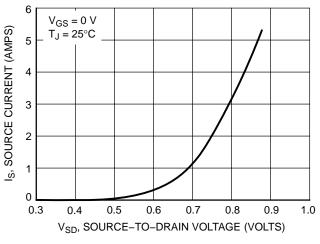
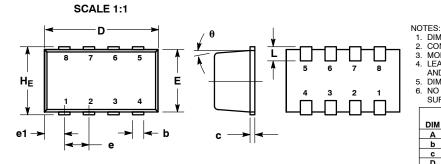
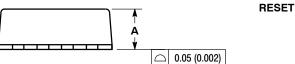


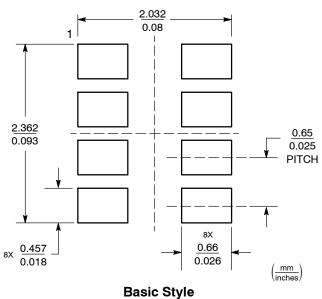
Figure 9. Resistive Switching Time Variation vs. Gate Resistance

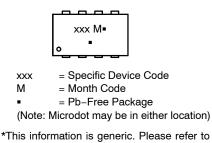

Figure 10. Diode Forward Voltage vs. Current

ChipFET™ CASE1206A-03 **ISSUE K**

DATE 19 MAY 2009


1.

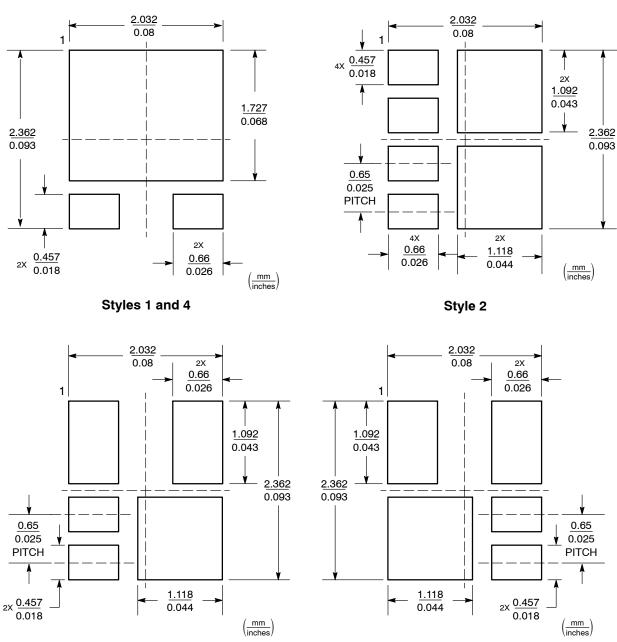
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 2.
- CONTROLLING DIMENSION: MILLINGTER.
 MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE.
 LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL AND VERTICAL SHALL NOT EXCEED 0.08 MM.
 DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
- NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE. 6.


	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.05	1.10	0.039	0.041	0.043
b	0.25	0.30	0.35	0.010	0.012	0.014
с	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	1.55	1.65	1.70	0.061	0.065	0.067
е		0.65 BSC			0.025 BSC)
e1	0.55 BSC			0.022 BSC	;	
L	0.28	0.35	0.42	0.011	0.014	0.017
HE	1.80	1.90	2.00	0.071	0.075	0.079
θ		5° NOM			5° NOM	

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. GATE 5. SOURCE 6. DRAIN	STYLE 2: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6 DRAIN 2	STYLE 3: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN	STYLE 4: PIN 1. COLLECTOR 2. COLLECTOR 3. COLLECTOR 4. BASE 5. EMITTER 6. COLLECTOR	STYLE 5: PIN 1. ANODE 2. ANODE 3. DRAIN 4. DRAIN 5. SOURCE 6. CATE	STYLE 6: PIN 1. ANODE 2. DRAIN 3. DRAIN 4. GATE 5. SOURCE 6. DDAIN
5. SOURCE 6. DRAIN 7. DRAIN 8. DRAIN	5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	5. DHAIN 6. DRAIN 7. CATHODE 8. CATHODE	5. EMITTER 6. COLLECTOR 7. COLLECTOR 8. COLLECTOR	5. SOURCE 6. GATE 7. CATHODE 8. CATHODE	6. DRAIN 7. DRAIN

SOLDERING FOOTPRINT

GENERIC **MARKING DIAGRAM***


device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " .", may or may not be present.

OPTIONAL SOLDERING FOOTPRINTS ON PAGE 2

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	ChipFET		PAGE 1 OF 2			
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and we retrademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.					

ChipFET™ CASE 1206A–03 ISSUE K

DATE 19 MAY 2009

ADDITIONAL SOLDERING FOOTPRINTS*

Style 3

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Style 5

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	ChipFET PAG		PAGE 2 OF 2			
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative