High-Power NPN Silicon Transistor

This transistor is for use as an output device in complementary audio amplifiers to 100–Watts music power per channel.

Features

- High DC Current Gain $-h_{FE} = 25-100$ @ I_C = 7.5 A
- Excellent Safe Operating Area
- Complement to the PNP MJ4502
- Pb-Free Package is Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CER}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Collector-Emitter Voltage	V _{CEO}	90	Vdc
Emitter-Base Voltage	V _{EB}	4.0	Vdc
Collector Current	Ι _C	30	Adc
Base Current	Ι _Β	7.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	200 1.14	W ₩/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	θ_{JC}	0.875	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

30 AMPERE POWER TRANSISTOR NPN SILICON 100 VOLTS – 200 WATTS

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

MJ802	= Device Code
G	= Pb–Free Package
A	= Assembly Location
YY	= Year
WW	= Work Week
MEX	= Country of Origin

ORDERING INFORMATION

Device	Package	Shipping
MJ802	TO-204	100 Units / Tray
MJ802G	TO–204 (Pb–Free)	100 Units / Tray

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ802

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	l			1
Collector–Emitter Breakdown Voltage ($I_C = 200 \text{ mAdc}, R_{BE} = 100 \Omega$)	BV _{CER}	100	-	Vdc
Collector-Emitter Sustaining Voltage (Note 1) (I _C = 200 mAdc)	V _{CEO(sus)}	90	-	Vdc
Collector-Base Cutoff Current ($V_{CB} = 100 \text{ Vdc}, I_E = 0$) ($V_{CB} = 100 \text{ Vdc}, I_E = 0, T_C = 150^{\circ}\text{C}$)	І _{СВО}		1.0 5.0	mAdc
Emitter–Base Cutoff Current ($V_{BE} = 4.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	1.0	mAdc
DN CHARACTERISTICS ⁽¹⁾				
DC Current Gain (Note 1) ($I_C = 7.5 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$)	h _{FE}	25	100	-
Base-Emitter "On" Voltage (I _C = 7.5 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	-	1.3	Vdc
Collector–Emitter Saturation Voltage $(I_C = 7.5 \text{ Adc}, I_B = 0.75 \text{ Adc})$	V _{CE(sat)}	-	0.8	Vdc
Base–Emitter Saturation Voltage $(I_C = 7.5 \text{ Adc}, I_B = 0.75 \text{ Adc})$	V _{BE(sat)}	-	1.3	Vdc
DYNAMIC CHARACTERISTICS	·		•	•
Current Coin Bondwidth Broduct	4	2.0		

Current Gain - Bandwidth Product MHz 2.0 f_{T} _ $(I_{C} = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz})$

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

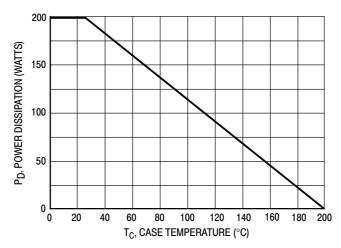
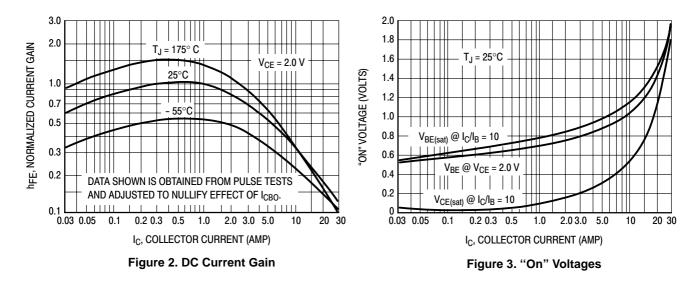



Figure 1. Power–Temperature Derating Curve

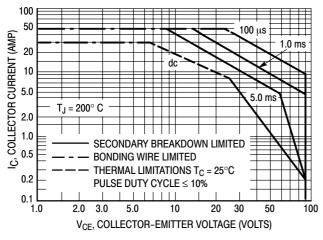


Figure 4. Active Region Safe Operating Area

The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not enter secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T_J , power temperature derating must be observed for both steady state and pulse power conditions.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

DIMENSIONS			
SCALE 1:1	TO–204 (TO–3) CASE 1–07 ISSUE Z)	DATE 05/18/1988
$ \begin{array}{c} $	$ \begin{array}{c} $	NOTES: 1. DIMENSIONING AND TC Y14.5M, 1982. 2. CONTROLLING DIMENS 3. ALL RULES AND NOTES REFERENCED TO-204A MIN MAX A 1.550 REF B 1.050 C 0.250 0.335 D 0.038 0.043 E 0.055 0.070 G 0.430 BSC H 0.215 BSC K 0.440 0.480 L 0.665 BSC N 0.830 Q 0.151 0.165 U 1.187 BSC V 0.131 0.188	ION: INCH.
STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR STYLE 6: PIN 1. GATE 2. EMITTER CASE: COLLECTOR	STYLE 2: STYLE 3: PIN 1. BASE PIN 1. GATE 2. COLLECTOR 2. SOURCE CASE: EMITTER CASE: DRAIN STYLE 7: STYLE 8: PIN 1. ANODE PIN 1. CATHODE #1 2. OPEN 2. CATHODE #2 CASE: CATHODE CASE: ANODE	STYLE 4: STYLE 5: PIN 1. GROUND 2. INPUT CASE: OUTPUT STYLE 9: PIN 1. ANODE #1 2. ANODE #2 CASE: CATHODE	E AL TRIP/DELAY

ON Semiconductor and **W** are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative