ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

NTD6N40

Preferred Device

Power MOSFET 6 Amps, 400 Volts **N-Channel DPAK**

Designed for high voltage, high speed switching applications in power supplies, converters, power motor controls and bridge circuits.

Features

- Higher Current Rating
- Lower R_{DS(on)}
- Lower Capacitances
- Lower Total Gate Charge
- Tighter V_{SD} Specifications
- Avalanche Energy Specified
- Industry Standard DPAK Surface Mount Package

Typical Applications

- Switch Mode Power Supplies
- PWM Motor Controls
- Converters
- Bridge Circuits

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Symbol	Value	Unit
V _{DSS}	400	Vdc
V _{DGR}	400	Vdc
V _{GS} V _{GSM}	±20 ±40	Vdc
I _D I _D I _{DM}	6.0 4.2 21	Adc
PD	96 0.77 1.75	Watts W/°C W/°C
T _J , T _{stg}	– 55 to 150	°C
E _{AS}	180	mJ
R _{θJC} R _{θJA} R _{θJA}	1.30 100 71.4	°C/W
ΤL	260	°C
	VDSS VDGR VGS VGSM ID ID ID PD TJ, Tstg EAS ReJC ReJA ReJA ReJA	VDSS 400 VDGR 400 VGS ±20 VGSM ±40 ID 6.0 ID 4.2 IDM 21 PD 96 0.77 1.75 TJ, Tstg -55 to T50 EAS ReJC 1.30 ReJA 100 ReJA 71.4

 When surface mounted to an FR4 board using the minimum recommended pad size.

ON Semiconductor

http://onsemi.com

6 AMPERES

400 VOLTS R_{DS(on)} = 1.1 Ω

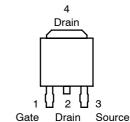
N-Channel

MARKING

= Year = Work Week

WW

т


= MOSFET

CASE 369A

DPAK

STYLE 2

ORDERING INFORMATION

Device	Package	Shipping
NTD6N40	DPAK	75 Units/Rail
NTD6N40-1	DPAK	75 Units/Rail
NTD6N40T4	DPAK	2500 Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

NTD6N40

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-to-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 0.25 mAdc) Temperature Coefficient (Positive)	V _{(BR)DSS}	400 -	_ 500		Vdc mV/°C
Zero Gate Voltage Collector Current ($V_{DS} = 400 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}$) ($V_{DS} = 400 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C}$)	I _{DSS}			10 100	μAdc
Gate-Body Leakage Current (V_{GS} = ±20 Vdc, V_{DS} = 0)	I _{GSS(f)} I _{GSS(r)}			100 100	nAdc

ON CHARACTERISTICS (Note 1)

Gate Threshold Voltage $I_D = 0.25 \text{ mA}, V_{DS} = V_{GS}$ Temperature Coefficient (Negative)	V _{GS(th)}	2.0	2.7 6.0	4.0	Vdc mV/°C
Static Drain-to-Source On-Resistance (V _{GS} = 10 Vdc, I _D = 3 Adc)	R _{DS(on)}	-	900	1100	mOhm
$\label{eq:constraint} \begin{array}{l} \mbox{Drain-to-Source On-Voltage} \\ (V_{GS} = 10 \mbox{ Vdc}, \mbox{ I}_{D} = 6 \mbox{ Adc}) \\ (V_{GS} = 10 \mbox{ Vdc}, \mbox{ I}_{D} = 3 \mbox{ Adc}, \mbox{ T}_{J} = 125^{\circ}\mbox{C}) \end{array}$	V _{DS(on)}		- 6	7.9 6.9	Vdc
Forward Transconductance (V _{DS} = 15 Vdc, I _D = 3 Adc)	9 _{FS}	2.0	4.4	-	mhos
DYNAMIC CHARACTERISTICS					

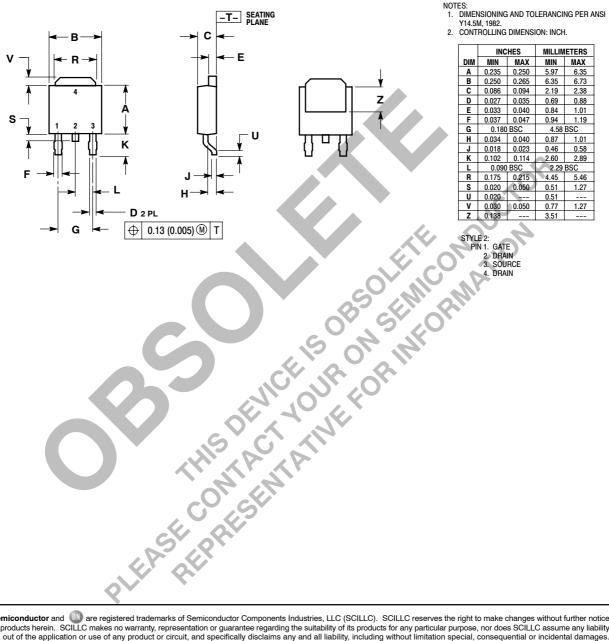
DYNAMIC CHARACTERISTICS

Input Capacitance		C _{iss}	-0	515	720	pF
Output Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}		185	260	
Transfer Capacitance		C _{rss}		15	30	
SWITCHING CHARACTERISTIC	S (Note 2)	5.5	<u> </u>			

SWITCHING CHARACTERISTICS (Note 2)

Turn-On Delay Time	5	t _{d(on)}	-	7.0	10	ns
Rise Time	$(V_{DD}=200 \; Vdc, \; I_{D}=6 \; Adc, \\ V_{GS}=10 \; Vdc, \\ R_{G}=9.1 \; \Omega)$	tr	-	11	20	
Turn-Off Delay Time	$R_{\rm G} = 9.1 \ \Omega$	t _{d(off)}	-	19	40	
Fall Time	N. 10-	t _f	-	10	20	
Gate Charge		QT	-	9.5	19	nC
	(V _{DS} = 320 Vdc, I _D = 6 Adc, V _{GS} = 10 Vdc)	Q ₁	-	2.0	-	
	V _{GS} = 10 Vdc)	Q ₂	-	3.0	-	
		Q ₃	-	6.0	-	

SOURCE-DRAIN DIODE CHARACTERISTICS


Forward On-Voltage (Note 1)		V _{SD}				Vdc
	$(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$		-	0.9	1.0	
	$(I_S = 6 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$		-	0.8	-	
Reverse Recovery Time		t _{rr}	-	270	-	ns
Q *		t _a	-	110	-	
	(I _S = 6 Adc, V _{GS} = 0 Vdc, di _S /dt = 100 A/μs)	t _b	-	160	-	
Reverse Recovery Stored Charge		Q _{RR}	-	1.6	_	μC

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperature.

NTD6N40

PACKAGE DIMENSIONS

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative