ON Semiconductor

Is Now

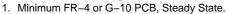
Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

FETKY[™] Power MOSFET and Schottky Diode Dual SO–8 Package

Features


- High Efficiency Components in a Single SO-8 Package
- High Density Power MOSFET with Low R_{DS(on)}, Schottky Diode with Low V_F
- Logic Level Gate Drive
- Independent Pin–Outs for MOSFET and Schottky Die Allowing for Flexibility in Application Use
- Less Component Placement for Board Space Savings
- SO-8 Surface Mount Package, Mounting Information for SO-8 Package Provided
- Pb–Free Package is Available

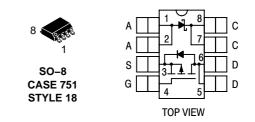
Applications

• Power Management in Portable and Battery–Powered Products, i.e.: Computers, Printers, PCMCIA Cards, Cellular and Cordless Telephones

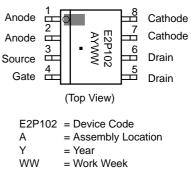
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	-20	V
Gate-to-Source Voltage - Continuous	V _{GS}	±10	V
Thermal Resistance, Junction–to–Ambient (Note 1) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 100^{\circ}C$ Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _{DM}	175 0.71 -2.3 -1.45 -9.0	°C/W W A A A
Thermal Resistance, Junction–to–Ambient (Note 2) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 100^{\circ}C$ Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _D	105 1.19 -2.97 -1.88 -12	°C/W W A A A
Thermal Resistance, Junction-to-Ambient (Note 3) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 100^{\circ}C$ Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _{DM}	62.5 2.0 -3.85 -2.43 -15	°CW W A A A
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
	E _{AS}	350	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), Steady State.
- 3. Mounted onto a 2″ square FR–4 Board (1″ sq. 2 oz Cu 0.06″ thick single sided), t \leq 10 seconds.
- 4. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.



ON Semiconductor®


http://onsemi.com

MOSFET -2.3 AMPERES, -20 VOLTS 90 mΩ @ V_{GS} = -4.5 V

SCHOTTKY DIODE 2.0 AMPERES, 20 VOLTS 580 mV @ I_F = 2.0 A

MARKING DIAGRAM & PIN ASSIGNMENTS

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMSD2P102LR2	SO-8	2500/Tape & Reel
NTMSD2P102LR2G	SO-8 (Pb-Free)	2500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SCHOTTKY MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage DC Blocking Voltage	V _{RRM} V _R	20	V
Average Forward Current (Note 5) (Rated V_R , $T_A = 100^{\circ}$ C)	Io	1.0	A
Peak Repetitive Forward Current (Note 5) (Rated V _R , Square Wave, 20 kHz, T _A = 105°C)	I _{FRM}	2.0	A
Non-Repetitive Peak Surge Current (Note 5) (Surge Applied at Rated Load Conditions, Half-Wave, Single Phase, 60 Hz)	I _{FSM}	20	A

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (Note 6)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-to-Source Breakdown Voltage ($V_{GS} = 0 \text{ Vdc}, I_D = -250 \mu \text{Adc}$) Temperature Coefficient (Positive)	V _(BR) DSS	-20 -	_ -12.7	-	Vdc mV/°C
Zero Gate Voltage Drain Current $(V_{DS} = -16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 25^{\circ}\text{C})$ $(V_{DS} = -16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	I _{DSS}			-1.0 -25	μAdc
Zero Gate Voltage Drain Current ($V_{GS} = 0 \text{ Vdc}, V_{DS} = -20 \text{ Vdc}, T_J = 25^{\circ}\text{C}$)	I _{DSS}	-	-	-2.0	μAdc
Gate-Body Leakage Current (V _{GS} = -10 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-	-	-100	nAdc
Gate-Body Leakage Current (V _{GS} = +10 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	100	nAdc
ON CHARACTERISTICS					
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = -250 \mu Adc)$ Temperature Coefficient (Negative)	V _{GS(th)}	-0.5 -	-0.90 2.5	-1.5 -	Vdc mV/°C
Static Drain-to-Source On-State Resistance ($V_{GS} = -4.5$ Vdc, $I_D = -2.4$ Adc) ($V_{GS} = -2.7$ Vdc, $I_D = -1.2$ Adc) ($V_{GS} = -2.5$ Vdc, $I_D = -1.2$ Adc)	R _{DS(on)}	_ _ _	0.070 0.100 0.110	0.090 0.130 0.150	Ω
Forward Transconductance ($V_{DS} = -10 \text{ Vdc}, I_D = -1.2 \text{ Adc}$)	9fs	_	4.2	-	Mhos

DYNAMIC CHARACTERISTICS

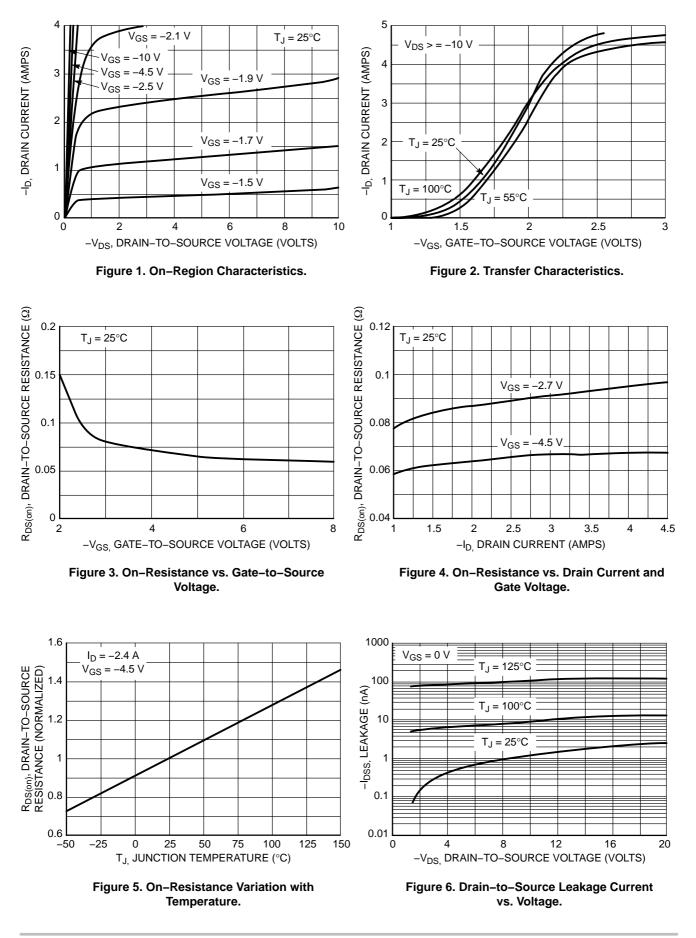
Input Capacitance		C _{iss}	-	550	750	pF
Output Capacitance	$(V_{DS} = -16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	200	300	
Reverse Transfer Capacitance		C _{rss}	-	100	175	

Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), t ≤ 10 seconds.
Handling precautions to protect against electrostatic discharge is mandatory.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued) (Note 7)

C	Symbol	Min	Тур	Max	Unit	
SWITCHING CHARACTERISTICS (Notes 8 & 9)						
Turn-On Delay Time		t _{d(on)}	-	10	20	ns
Rise Time	$(V_{DD} = -10 \text{ Vdc}, I_D = -2.4 \text{ Adc},$	tr	-	35	65	
Turn-Off Delay Time	$V_{GS} = -4.5 \text{ Vdc}, R_{G} = 6.0 \Omega$	t _{d(off)}	-	33	60	
Fall Time		t _f	-	29	55	
Turn-On Delay Time		t _{d(on)}	-	15	-	ns
Rise Time	(V _{DD} = -10 Vdc, I _D = -1.2 Adc,	t _r	-	40	-	
Turn-Off Delay Time	$V_{GS} = -2.7 \text{ Vdc}, R_{G} = 6.0 \Omega$	t _{d(off)}	-	35	-	
Fall Time		t _f	-	35	-	
Total Gate Charge		Q _{tot}	-	10	18	nC
Gate-Source Charge	$(V_{DS} = -16 \text{ Vdc}, V_{GS} = -4.5 \text{ Vdc}, I_{D} = -2.4 \text{ Adc})$	Q _{gs}	-	1.5	-	1
Gate-Drain Charge]	Q _{gd}	-	5.0	-]

BODY-DRAIN DIODE RATINGS (Note 8)


Diode Forward On–Voltage	$(I_{S} = -2.4 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_{S} = -2.4 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_{J} = 125^{\circ}\text{C})$	V _{SD}		-0.88 -0.75	-1.0 _	Vdc
Reverse Recovery Time		t _{rr}	-	37	-	ns
	$(I_{S} = -2.4 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, dI_{S}/dt = 100 \text{ A/us})$	t _a	-	16	-	
		t _b	-	21	-	
Reverse Recovery Stored Charge		Q _{RR}	_	0.025	_	μC

SCHOTTKY RECTIFIER ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (Note 8)

Maximum Instantaneous Forward Voltage		VF	T _J = 25°C	T _J = 125°C	V
	$I_F = 1.0 \text{ Adc}$ $I_F = 2.0 \text{ Adc}$		0.47 0.58	0.39 0.53	-
Maximum Instantaneous Reverse Current		I _R	T _J = 25°C	T _J = 125°C	mA
	$V_R = 20 Vdc$		0.05	10	
Maximum Voltage Rate of Change	$V_R = 20 \text{ Vdc}$	dV/dt	10,0	V/µs	

7. Handling precautions to protect against electrostatic discharge is mandatory. 8. Indicates Pulse Test: Pulse Width = $300 \,\mu s \, max$, Duty Cycle = 2%.

9. Switching characteristics are independent of operating junction temperature.

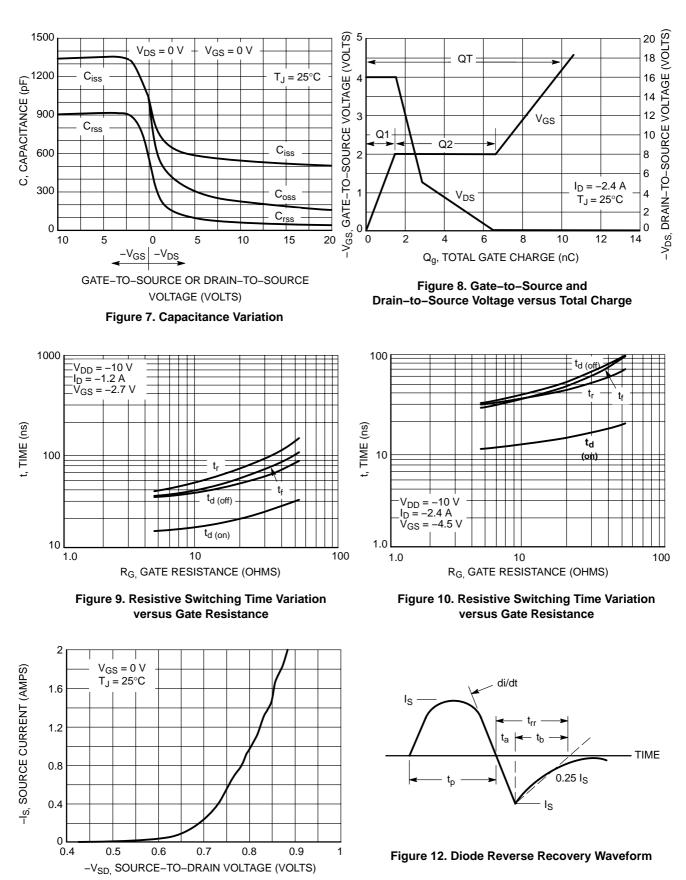
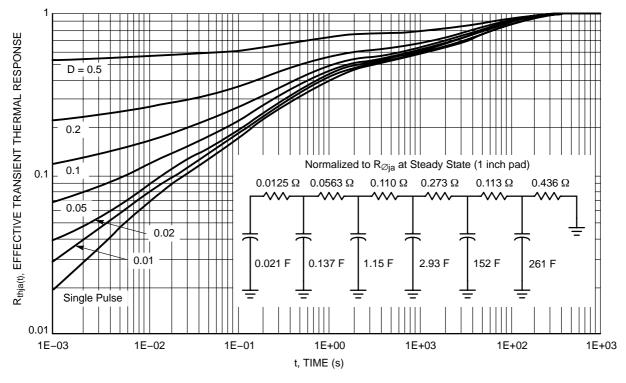
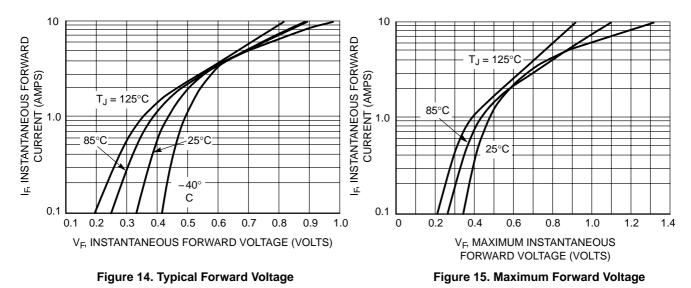
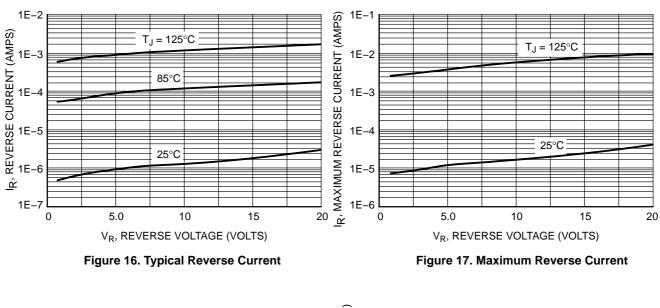
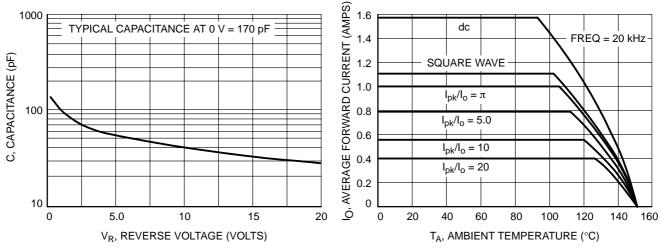
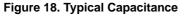
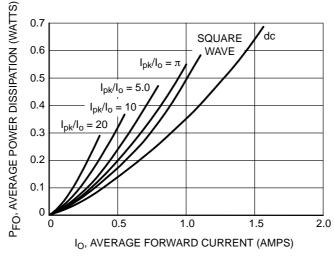


Figure 11. Diode Forward Voltage versus Current

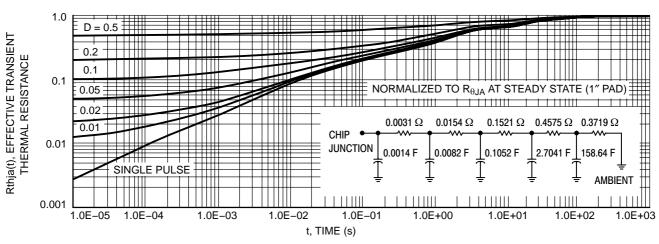




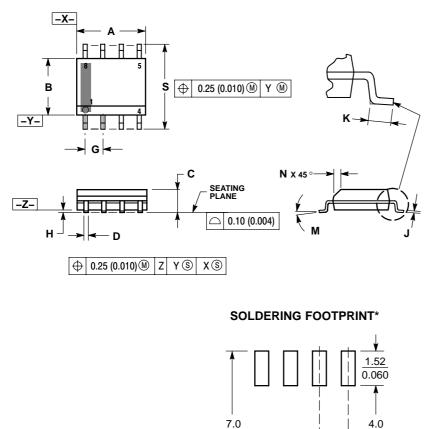

Figure 13. FET Thermal Response


TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS



TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS





TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AH**

0.275

0.6

0.024

NOTES

- 1. DIMENSIONING AND TOLERANCING PER
- 2
- 3.
- DIMENSIONING AND TOLERANCING PER ANSI Y14-5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) 4 PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR 5. PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
κ	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
Ν	0.25	0.50	0.010	0.020
s	5.80	6.20	0.228	0.244

STYLE 18:

ANODE PIN 1. 2. ANODE

- З. SOURCE
- 4 GATE
- DRAIN 5
- 6. DRAIN 7 CATHODE

mm)

inches

SCALE 6:1

8. CATHODE

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

0.155

1.270

0.050

FETKY is a trademark of International Rectifier Corporation.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC besone under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, ad distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, and claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative