ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

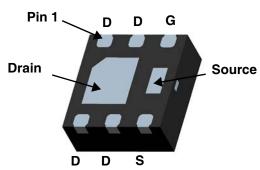
FDMA430NZ

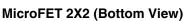
Single N-Channel 2.5V Specified PowerTrench® MOSFET

30V, **5.0A**, **40m**Ω

General Description

This Single N-Channel MOSFET has been designed using ON Semiconductor's advanced Power Trench process to optimize the $R_{DS}(on)$ @ V_{GS} =2.5V on special MicroFET leadframe.


Applications


■ Li-Ion Battery Pack

Features

- $R_{DS(on)} = 40 \text{m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$, $I_D = 5.0 \text{A}$
- $R_{DS(on)} = 50m\Omega$ @ $V_{GS} = 2.5 \text{ V}$, $I_D = 4.5 \text{A}$
- Low Profile-0.8mm maximum-in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2.5kV typical (Note 3)
- Free from halogenated compounds and antimony oxides
- RoHS Compliant

S 4 3 G D 5 D 6 D 1 D Bottom Drain Contact

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DSS}	Drain-Source Voltage		30	V
V_{GSS}	Gate-Source Voltage		±12	V
	Drain Current -Continuous	(Note 1a)	5.0	۸
'D	-Pulsed		20	A
D	Power dissipation (Steady State)	(Note 1a)	2.4	W
P_{D}		(Note 1b)	0.9	VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	52	°C/W
$R_{\theta,IA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	145	*C/VV

Package Marking and Ordering Information

Device Ma	rking	Device	Reel Size	Tape Width	Quantity
430		FDMA430NZ	7"	8 mm	3000 units

Max

Тур

Min

Units

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Parameter

Off Characteristics								
B _{VDSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_{D} = 250\mu A$	30			V		
$\frac{\Delta B_{VDSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		25.2		mV/°C		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V, V_{GS} = 0V,$			1	μΑ		
I _{GSS}	Gate-Body Leakage,	$V_{GS} = \pm 12V, \ V_{DS} = 0V$			±10	μΑ		

Test Conditions

On Characteristics (Note 2)

Symbol

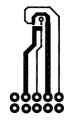
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.6	0.81	1.5	V
$\Delta V_{GS(th)}$ ΔT_J	Gate Threshold Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		-3.2		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5V, I_D = 5.0A$		23.6	40	mΩ
		$V_{GS} = 4.0V, I_D = 5.0A$		23.9	41	
		$V_{GS} = 3.1V, I_D = 4.5A$		25.4	43	
		$V_{GS} = 2.5V, I_D = 4.5A$		27.6	50	11132
		$V_{GS} = 4.5V, I_D = 5.0A,$ $T_J = 150$ °C		37.0	61	
9 _{FS}	Forward Transconductance	$V_{DS} = 5V, I_{D} = 5.0A$		25.6		S

Dynamic Characteristics

C _{iss}	Input Capacitance	$V_{DS} = 10V, V_{GS} = 0V,$	600	800	pF
C _{oss}	Output Capacitance	f = 1.0MHz	110	150	pF
C _{rss}	Reverse Transfer Capacitance		75	115	pF
R_G	Gate Resistance	f = 1.0MHz	3.5		Ω

Switching Characteristics (Note 2)

t _{d(on)}	Turn-On Delay Time	V _{DD} = 10V, I _D = 1A	8.3	17	ns
t _r	Turn-On Rise Time		7.1	15	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 4.5V$, $R_{GEN} = 6\Omega$	18.1	37	ns
t _f	Turn-Off Fall Time		6.0	12	ns
Q_g	Total Gate Charge	V 10V I 5.0A	7.3	11	nC
Q_{gs}	Gate-Source Charge	$V_{DS} = 10V, I_D = 5.0A,$ $V_{GS} = 4.5V$	0.8	2	nC
Q_{gd}	Gate-Drain Charge		1.9	3	nC


Drain-Source Diode Characteristics and Maximum Ratings

I _S	Maximum Continuous Drain-Source Diode Forward Current			2.0	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 2.0A$	0.69	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 5.0A,$		17	ns
Q _{rr}	Diode Reverse Recovery Charge	di/dt = 100A/μs		5	nC

Notes: 1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins.

a. 52 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 145 °C/W when mounted on a minimum pad of 2 oz copper.

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0% 3. The diode connected between the gate and the source serves only as proection against ESD. No gate overvoltage rating is implied.

Typical Characteristics T_J = 25°C unless otherwise noted

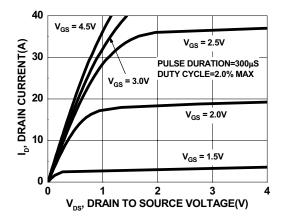


Figure 1. On Region Characteristics

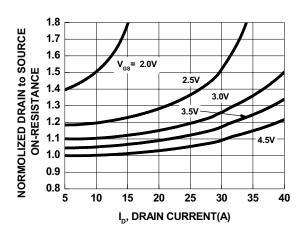


Figure 2. On-Resistance vs Drain Current and Gate Voltage

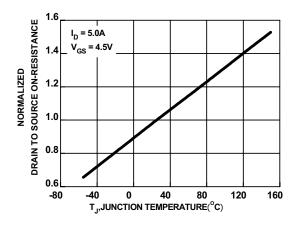


Figure 3. Normalized On Resistance vs Junction Temperature

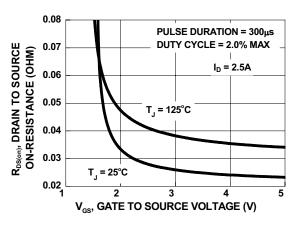


Figure 4. On-Resistance vs Gate to Source Votlage

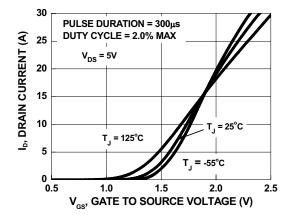


Figure 5. Transfer Characteristics

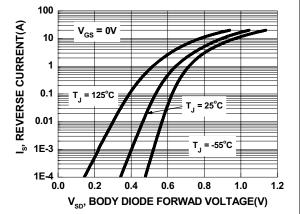


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

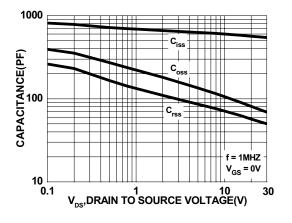
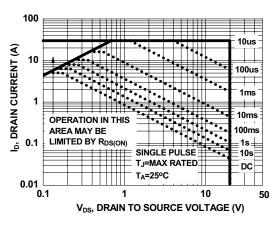



Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs Drain to Source Voltage

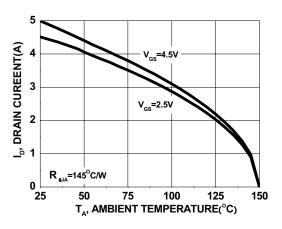


Figure 9. Safe Operating Area

Figure 10. Maximum Continuous Drain Current vs
Ambient Temperature

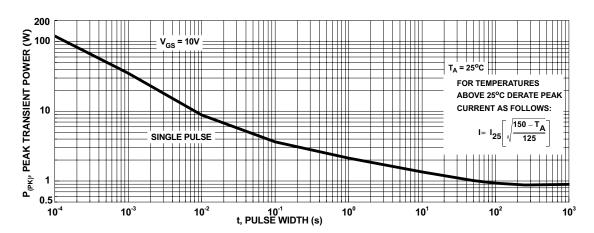
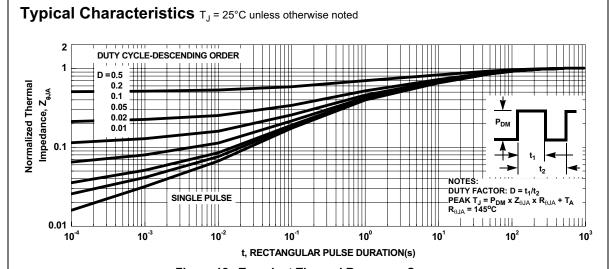
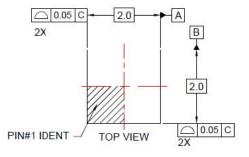
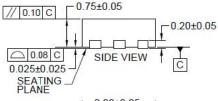
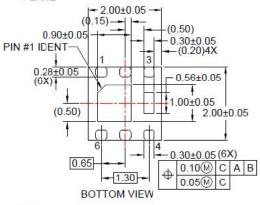
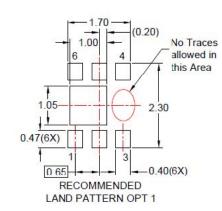
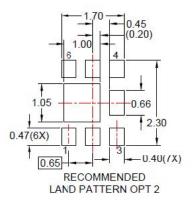


Figure 11. Single Pulse Maximum Power Dissipation


Figure 12. Transient Thermal Response Curve


Dimensional Outline and Pad Layout

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC MO-229 REGISTRATION
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-MLP06Lrev4.

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative