ON Semiconductor

Is Now

Onsemi

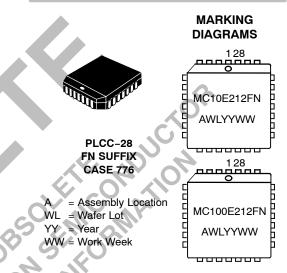
To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

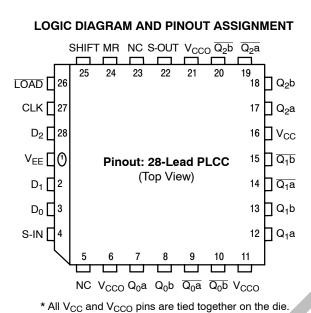
5V ECL 3-Bit Scannable Registered Address Driver

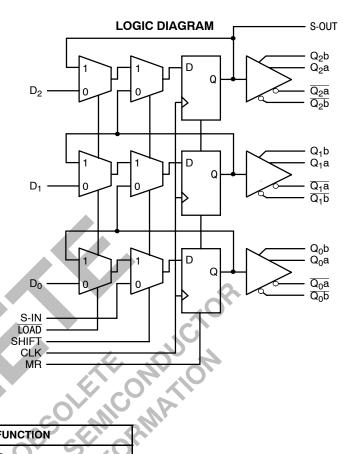
The MC10E/100E212 is a scannable registered ECL driver typically used as a fan-out memory address driver for ECL cache driving. In a VLSI array based CPU design, use of the E212 allows the user to conserve array output cell functionality and also output pins.

The input shift register is designed with control logic which greatly facilitates its use in boundary scan applications.


The 100 Series contains temperature compensation.

- Scannable Version E112 Driver
- 1025 ps Max. CLK to Output
- Dual Differential Outputs
- Master Reset
- PECL Mode Operating Range: V_{CC}= 4.2 V to 5.7 V with $V_{EE} = 0 V$
- NECL Mode Operating Range: V_{CC}= 0 V with V_{EE} = -4.2 V to -5.7 V
- Internal Input Pulldown Resistors
- ESD Protection: > 1 KV HBM, > 75 V MM
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- • Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8" Oxygen Index 28 to 34
- Transistor Count = 259 devices


ON Semiconductor®


http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC10E212FN	PLCC-28	37 Units/Rail
MC10E212FNR2	PLCC-28	500 Units/Reel
MC100E212FN	PLCC-28	37 Units/Rail
MC100E212FNR2	PLCC-28	500 Units/Reel

Warning: All V_{CC} , V_{CCO} , and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

PIN DESCRIPTION

PIN	FUNCTION
D ₀ - D ₂	ECL Data Inputs
S-IN	ECL Scan Input
LOAD	ECL LOAD/HOLD Control
SHIFT	ECL Scan Control
CLK	ECL Clock
MR	ECL Reset
S-OUT	ECL Scan Output
Q[0:2]a, Q[0:2]b	ECL True Outputs
<u>Q</u> [0:2]a, <u>Q</u> [0:2]b	ECL Inverting Outputs
V _{CC} , V _{CCO}	Positive Supply
VEE	Negative Supply
NC	No Connect
	D ₀ - D ₂ S-IN LOAD SHIFT CLK MR S-OUT Q[0:2]a, Q[0:2]b Q[0:2]a, Q[0:2]b V _{CC} , V _{CCO} V _{EE}

FUNCTION TABLE

LOAD	SHIFT	MR	MODE
L	L	L	Load
Н	L	L	Hold
Х	Н	L	Shift
Х	Х	Н	Reset

5

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
ТА	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	28 PLCC 28 PLCC	63.5 43.5	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	28 PLCC	22 to 26	°C/W
V_{EE}	PECL Operating Range NECL Operating Range			4.2 to 5.7 -5.7 to -4.2	V V
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

10E SERIES PECL DC CHARACTERISTICS V_{CCx}= 5.0 V; V_{EE}= 0.0 V (Note 1)

			0°C			25°C	0		85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		80	96	S	80	96		80	96	mA
V _{OH}	Output HIGH Voltage (Note 2)	3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
VIL	Input LOW Voltage	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
I _{IH}	Input HIGH Current	6	1	150	X		150			150	μA
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.3	0.2		μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.06 V. 2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

10E SERIES NECL DC CHARACTERISTICS V_{CCx}= 0.0 V; V_{EE}= -5.0 V (Note 1)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		80	96		80	96		80	96	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 2)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
V _{IL}	Input LOW Voltage	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.46 V / -0.06 V. 2. Outputs are terminated through a 50 ohm resistor to V_{CC} -2 volts.

100E SERIES PECL DC CHARACTERISTICS V_{CCx}= 5.0 V; V_{EE}= 0.0 V (Note 1)

		0°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		80	96		80	96		92	110	mA
V _{OH}	Output HIGH Voltage (Note 2)	3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2)	3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
V _{IH}	Input HIGH Voltage	3835	4050	4120	3835	4120	4120	3835	4120	4120	mV
V _{IL}	Input LOW Voltage	3190	3300	3525	3190	3525	3525	3190	3525	3525	mV
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μΑ

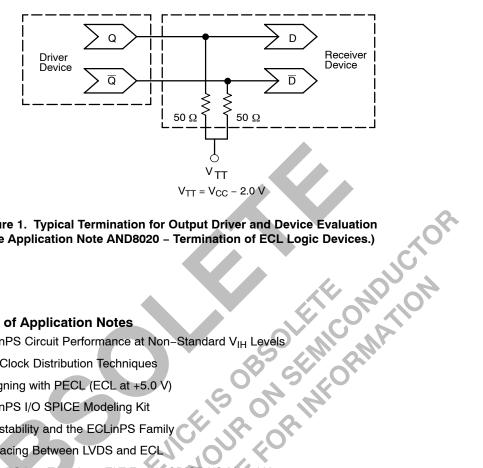
NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.4 6V / -0.8 V.
2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

100E SERIES NECL DC CHARACTERISTICS V_{CCx}= 0.0 V; V_{EE}= -5.0 V (Note 1)

		0°C			25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		80	96		80	96		92	110	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
V _{IH}	Input HIGH Voltage	-1165	-950	-880	-1165	-880	-880	-1165	-880	-880	mV
V _{IL}	Input LOW Voltage	-1810	-1700	-1475	-1810	-1475	-1475	-1810	-1475	-1475	mV
I _{IH}	Input HIGH Current			150			150	0		150	μA
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.46 V / -0.8 V.
2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

AC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V or V_{CCx} = 0.0 V; V_{EE} = -5.0 V (Note 1)

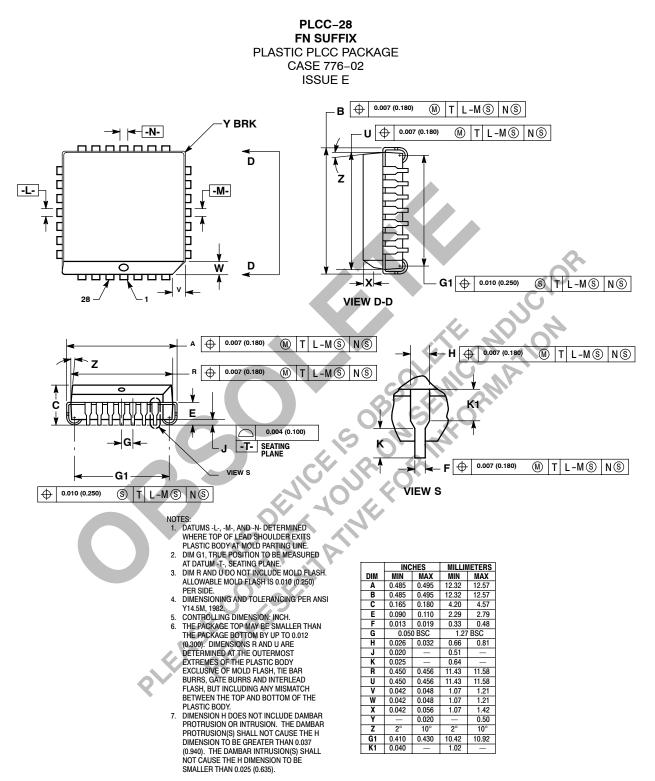

			0°C	JV.	.0	25°C			85°C		
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
t _{PLH}	Propagation Delay to Output										ps
t _{PHL}	OLK	575	800	1025	575	800	1025	575	800	1025	
	MŘ	575	800	1025	575	800	1025	575	800	1025	
	CLK to S-OUT	575	800	1025	575	800	1025	575	800	1025	
t _s	Setup Time										ps
	O D	175	25		175	25		175	25		
	SHIFT	150	- 50		150	- 50		150	- 50		
	LOAD	225	50		225	50		225	50		
	S-IN	150	- 50		150	- 50		150	- 50		
t _h	Hold Time										ps
	D	250	25		250	25		250	25		
	SHIFT	300	100		300	100		300	100		
	LOAD	225	0		225	0		225	0		
	S-IN	300	100		300	100		300	100		
t _{RR}	Reset Recovery	600	350		600	350		600	350		ps
t _{SKEW}	Within-Device Skew (Note 1.)		100			100			100		ps
t _{SKEW}	Within-Gate Skew (Note 2.)		50			50			50		ps
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
t _r	Rise/Fall Times										ps
t _f	(20 - 80%)	275	425	650	275	425	650	275	425	650	

1. 10 Series: V_{EE} can vary +0.46 V / –0.06 V.

100 Series: V_{EE} can vary +0.46 V / -0.8 V.

1. Within-device skew is defined as identical transitions on similar paths through a device.

2. Within-gate skew is defined as the difference in delays between various outputs of a gate when driven from the same input.


Resource Reference of Application Notes

- ECLinPS Circuit Performance at Non–Standard V_{IH} Levels AN1404
- AN1405 ECL Clock Distribution Techniques _
- Designing with PECL (ECL at +5.0 V) AN1406 _
- ECLinPS I/O SPICE Modeling Kit AN1503 _
- Metastability and the ECLinPS Family AN1504
- Interfacing Between LVDS and ECL AN1568
- ECLinPS Lite Translator ELT Family SPICE I/O Model Kit AN1596

REP

- Using Wire-OR Ties in ECLinPS Designs AN1650
- AN1672 The ECL Translator Guide
- Odd Number Counters Design AND8001
- AND8002 Marking and Date Codes
- AND8020 Termination of ECL Logic Devices

PACKAGE DIMENSIONS

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personse, and reasonable attorney fees andising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized to application engine to the gard in such unintended or the part. SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative